
Modelling and Simulation of Multibodies in Mechatronic Systems

R. Kasper, D. Vlasenko
Otto-von-Guericke-University
Institute of Mobile Systems (IMS)

Abstract. This paper presents the detailed description of the method for the component-oriented modelling and
simulation of mechanical parts of mechatronical systems, implemented in the mechatronic simulation software
Virtual Systems Designer (VSD). The simulation of complex mechatronic systems shows the stability and
efficiency of the proposed approach.

1 Introduction

The implementation of the component-oriented in simulation tools significantly reduces the cost and
development time, increasing the software usability. All popular simulation tools used today support component-
oriented development of models, where mechanical systems are considered as a hierarchy of components, where
components usually include bodies, joints, external forces, etc.
But this type of modularization in most cases is given up during simulation, especially for mechanical systems,
because common modelling formulations use access to the complete system. On the other hand, there are big
advantages of a simulation on the basis of components:

• Components can be modelled, tested and compiled. Then they can be used in a way similar to
software components that encapsulate their internal structure and can be connected via interfaces.

• The commercial classified information of components is protected. A component works like a
"black box" that has to provide only the strictly determined set of information via its interfaces. The
components's internal data: parameters of constraints, forces, masses of internal bodies, etc. are
unknown to the users of components.

• Critical effects like coulomb friction, backslash etc. can be encapsulated inside a subsystem.
• The tool can be easily integrated into more general tools for the development of virtual reality of

mechatronic systems. Mechanical objects like bodies, springs, torques, etc. can be used as parents of
mechatronic objects.

This paper presents Virtual Systems Designer (VSD) for the development of virtual reality of mechatronic
systems. The tool is based on the fast component-oriented simulation method, whose time complexity is
comparable with the fastest available parallel algorithms.
Starting from the extended 3D-CAD model of a mechatronic system, VSD analyses the model’s mechanical
properties and the hierarchy of components. Then for each CAD component, defined by design engineers during
the model’s development, the correspondent VSD component is generated. The simplification of equations of
motion of components in VSD is made by Maple preprocessing module.

2 Description of Component-Oriented Simulation Method

The base idea of the method, shown in Fig. 1, is to perform the simulation of mechanical systems using the
hierarchy of submodels that builds up the complete system.

 (), (k kt tq v)

 Calculation of

accelerations

()tv k

Figure 1: Simulation steps

Integration

Stabilisation

1 1(), ()k kt t+ +q v

1 1(), ()k kt t+ +q v

,q v

v

v

Components of the first level in general consist of connected bodies. Components of next levels (called children)
consist, without loss of generality, of connected submodels (called parents). Since the main number of
calculations proceeds inside of components, it follows that the simulation can be distributed easily on several
processors. During the simulation on each time step the following tasks have to be performed:

1. Distributed calculation of the absolute accelerations .)(kt
2. Calculation of the absolute coordinates and velocities at the next time step. Using a favorite ODE

integration scheme (e.g. Runge-Kutta or some multistep method), the value of the absolute coordinates
)(~

1+ktq and velocities)(~
1+ktv at the new time step can be obtained.

3. Distributed stabilization of the absolute coordinates q(tk+1) and velocities v(tk+1).

3 Distributed calculation of acceleration

Let be a vector of absolute coordinates of bodies in the simulated mechanical system,
consisting on bodies position coordinates and Euler parameters. Let ܏ሺܙሻ be the vector of constraints, describing

the joints between bodies, and g q be the vector of additional constraints on the Euler
parameters

ܙ ൌ ሺܙଵ் … ୬்ሻ்ܙ

()1() g , g
Tn= …

g௕௜ ሺܙ௜ሻ ൌ ෍൫݁௞௜ ൯
ଶ

௞ୀ଴

െ 1

௞
௜

 v(ܙ)ሶ=Tܙ

ቆ(ܙ)ۻ ۵෡(ܙ)
۵෡(ܙ) ૙

ቇ · ቆ
ሶܞ

b bb

ଷ

(1)

where ݁ are Euler parameters of the i-th body.
The index-one system of differential-algebraical equations then can be written as

ૃ
ቇ ൌ ቆ

,ܙሺ܎ ሻܞ
,ܙሺܝ ሻܞ

ቇ

(2)

(3)

where
v is the vector of absolute velocities, consisting on bodies linear and angular velocities
ۻ
܎
۵෡(ܙ)=

 is the mass matrix (ܙ)
ሺܙ, ሻ is the vector of external forces (other than constrain forces)ܞ

T
డܙ
డ(ܙ)܏ is the constraint Jacobian matrix

λ is the vect

Figure 2: Calculation of acceleration steps

or of Lagrange multipliers.

D (1)

(1) R

)1,1()2,1(Q Q)1,2()2,2(QQ

D
(1,1) R(1,1) D

(1,2) R(1,2) D(2,1) R(2,1)
 D(2,2) R(2,2)

D R(2)

(2)

 S1,1 S1,2 S2,1 S2,2

S1 S2

S

)1(Q)2(Q

S2 S1

 S1,1 S1,2 S2,1 S2,2

Starting from (3), we can distribute ns ܞሶ as it shown in Fig. 2.

ices D(i) and R(i):

e (4)

where
i

e
()v is the vector of accelerations of the i-th parent’s bordering bodies

For exam rom its parents S1,1, S1,2 etc. Here
a body i nent and is connected with external

ndency matr

 the process of the calculation of acceleratio

3.1 Hierarchical generations of equations of motion

Each component gets from its parents their dependency matr

i i i i= +() () () ()v D Q R

i()Q
ple,

is the vector of forces acting in the i-th parent’s external links.
 in Fig. 2 the component S gets matrices D(1,1), R(1,1), D(2,1), R(2,1) f1
ed bordering to a component, if it has constraints in the compos call

joints. A body is called internal to a component, if it has constraints in the component and is not connected to
any external joint.
The component generates matrices D and R using the equation of constraints connecting the parents. Here D
and R are the depe ices:

= +DQ R (5ev

where
ev is the vector of accelerations of component’s bordering bodies
is the vector of forces in component’s external links.

Then th

of hierarchy
(i) transmits it to the parent (e.g. in Fig. 2

d (e.g. in Fig. 2 the component S1,2 gets
 each parent i the component calculates

, the values of coordinates 1()kt +q on the new time step are
s ܏, no

e t –
lty, th

dy
roject s coordi i

)

Q
e component transmits D and R to its child.

3.2 Calculation of absolute accelerations on the top

The component of the highest level calculates Q for each parent i and
the component S transmits Q(1), Q(2) to its parents S1, S2 correspondingly).

3.3 Backward hierarchical calculation of absolute accelerations

Subsequently, each component gets the current value of Q from its chil
Q(2) from its child S). Using Q the component calculates v . Then for1 e

Q(i) and transmits it to the parent. Finally the absolute accelerations of all bodies are obtained.

4 Algorithm of distributed post-stabilization

Using standard explicit solver (Runge-Kutta, etc.)
obtained. However, 1()kt +q do not fulfil nor the equations of joint constraint r the vector of additional
constraints on the Euler parameters ܏௕. The drift of constraints grows with tim at worst quadratically. To
overcome this difficu e coordinates and velocities can be projected back onto the manifolds given by ܏ሺܙሻ
and ܏௕(ܙ).
In [4, 5] it was shown that this projection can be done in the successive way. On the first stage for each bo i
we p it nates q onto the manifold, given by (1):

()
()

1
i

i i i
ig

= −
2 1i ig +

bq s
q

q
b q

 (6)

where ()0 1e e e2 30 0 0i i i i i T
e=s . On the second step we calculate the stabilized values of coordinates

q as the projection of q on the mani

fold, given by by ܏:

()= ⋅+q Tq q δ (7)

her tained by solving the w following minimization problem e the stabilizing displacement δ is ob

 min with (())→ + ⋅ =
Z

δ g q δqT 0

(8)

Depending on the method of projection (orthogonal or energy), the norm
Z

δ can be calculated as T=
Z

δ δ δ

or T=
Z

δ δ Mδ , correspondently.
The distribution of projection of coordinates is similar to the distribution of calculation of accelerations [7, 5].
In sake of simulation robustness, the stabilization of velocity constraints ˆ(,) ()= ⋅ =g q v G q v 0 is also needed.
This can be made by the distributed projection of velocities on the manifold, given by v g in the manner,
similar to the projection of coordinates [7, 5].

5 Implementation

The implementation of method was made in the Virtual System Designer (VSD) software, integrated with a
CAD tool Autodesk Inventor. Starting from the hierarchy of component, defined by design engeniers in
Autodesk Inventor, VSD generates correspondent objects, describing the components dynamics.
During the implementation of the method we needed to solve the problem of rank-deficiency of constraint
Jacobian matrix ۵෡ . Commonly, the rank deficiency can be two types:

1. Permanent rank deficiency because of existence of redundant constraints, defined during the
modeling. In many cases design engineers develop CAD models using the greater number of
constraints than it is needful from the mechanical point of view. For example, stiff connection between
two bodies is usually defined as the combination of three plane-to-plane joints, that leads to
appeareance three redundant constraints in the vector g . The best way to solve this problem is to
elliminate dependent rows from ۵෡ , using the singular value decomposition (SVD) of ۵෡ [3].

2. Singular configuration. If equations of motion of a complex multibody systems are made in absolute
coordinates, the appeareance of singular configuration is very common. This leads to the rank-defitient
problems during the simulation of system dynamics.

The calulation of accelerations and of stabilizing displacements on the coordinate and on the velocity levels
needs the decomposition of the same coordinate-dependent sparse matrix A for the calculation of X

BAXA (9) T =

where B varies for different types of calculation. In common case columns of A can be linear dependent,
therefore, the numericall expensive SVD of A is needed for the calculation of the minimal-norm solution of (9).
Nethertheless, in practice X can be calculated as a basic solution of (9). Therefore, we need only to calculate the
the numerically cheap QR-decomposition with pivoting A =Π QR [3, 1].
Since using absolute coordinates, the matrix A usually has a sparse structure and includes both numerical and
symbolic elements, e.g. the elements that are constant during the simulation and elements, depending on the
coordinates of bodies. We have developed in Maple a preprocessing module, which generates for each
component a corresponding Dynamically Linked Llibrary (.dll), decomosing the component’s matrix A [6].
The symbolic simplification of decompositions has several advantages in comparison with standard sparse
solvers:

• Sparse structure of matrices is used completely without any run time overhead.

• The numerical operations with numerical elements of matrices are performed already during the
translation.

• Additional operations with arrays of indexes (like in usual sparse solvers) are not needed.

6 Robot example

In order to test our software we performed the number of simulations of complex mechatronic systems. In this
article we present the simulation of dynamics of the Autodesk Inventor model of the industrial robot SPBot [2].
This is a two-axis robot, equipped with two DC servo motors, for rotating and transferring car engine block.
The complete mechanical Autodesk Inventor model consists of 247 parts coupled in several components, shown
in Fig 3: upper arm, motors, cyclo-drive gearboxes, etc. The mechanical part of the correspondent VSD model
includes 17 bodies connected by 32 joints. Some of model constraints are redundant because of the model’s
design in Autodesk Inventor (e.g. the definition of stiff connection as three plane-to-plane joints leads to the
generation of three redundant constraints). The list of components’ parts is shown in Table 1.

Figure 3: Hierarchy of components of SPBot robot model

Name component Parts Joints, External Forces, Sensors
Vertical Motor Rotor, Housing 1 Revolute Joint, Driving Torque, Velocity

Sensor
Horizontal Motor Rotor, Housing 1 Revolute Joint, Driving Torque, Velocity

Sensor
Vertical Cyclo-Drive
Gearbox

High-speed Shaft, Slow-Speed Shaft, 2
Cycloid Discs, Housing

4 Revolute Joints, 3 Gear Constraints

Horisontal Cyclo-
Drive Gearbox

High-speed Shaft, Slow-Speed Shaft, 2
Cycloid Discs, Housing

4 Revolute Joints, 3 Gear Constraints

Complete Model Vertical Motor, Horizontal Motor,
Vertical Gearbox, Horisontal Gearbox,
Base, Lower Arm, Upper Arm

4 Revolute Joints, 6 Plane Joints, 6
Cylindrical Joints

Table 1: Components of SPBot robot model

The simulation data shows that the consequent distributed stabilization algorithm is stable and the model's drift is
constant. The component-oriented distribution of calculations together with the implementation of the
preprocessing module greatly reduces numerical costs of the simulation. The computations of accelerations and

stabilizing displacements were distributed on the four cores of the Intel Core i7 I7-920 Quad Core Processor, that
significantly reduced the simulation time.
The component-oriented approach allows easily develop and simulate electro-mechanical models of motors and
integrate them with electrical components of the robot model.

7 Conclusion

The implementation of the component-oriented approach for the modelling and simulation of dynamics of
mechanical parts of mechatronic systems significantly simplifies the development, test and reuse of models. The
distribution of calculations on the base of components together with the implementation of the preprocessing
module for the simplification of components’ equations of motion greatly reduces numerical costs of the
simulation. The example of SPBot robot mechatronical model illustrates the implementation of the proposed
method.

References

[1] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1995

[2] M.M. Dalvand (2009): Automation of a complex transfer operation using a polar manipulator.

Assembly Automation, Vol. 29, No. 1., pp. 68-74.

[3] Golub G.H., Van Loan Ch.F. Matrix Computations, The John Hopkins University Press, Baltimore and
London, 1989, Second Edition.

[4] D. Vlasenko, R. Kasper (2009): Implementation of consequent stabilization method for simulation of

multibodies described in absolute coordinates Multibody System Dynamics (accepted, to appear).

[5] D. Vlasenko, R. Kasper (2009): Successive projection method for the simulation of spatial dynamics of
multibodies. Proceedings of Multibody Dynamics 2009 (ECCOMAS Thematic Conference), Warsaw,
Poland, June 29-2 July, 2009

[6] D. Vlasenko, R. Kasper (2008): Implementation of the Symbolic Simplification for the Calculation of

Accelerations of Multibodies. Proceedings of Industrial Simulation Conference 2008, Lyon, France, 9-
11 June, 2008.

[7] D. Vlasenko, R. Kasper (2007): Integration Method of CAD Systems. Proceedings of the ASME 2007

International Design Engineering Technical Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA.

	Modelling and Simulation of Multibodies in Mechatronic Systems

