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Abstract 
 
 In this paper, we propose the modular development of the direct violation correction 

method for the distributed computation of the forward dynamics simulations of constrained 
mechanical systems. We exploit the natural spatial parallelism of closed-chain linkages, 
initially, for the modular development of overall dynamics and subsequently, for the 
distributed numerical simulation of the dynamics. The technique could be implemented for 
various systems of connected bodies with variable number degrees of freedom such as 
systems with coulomb frictions. A numerical example is provided to demonstrate the 
effectiveness and stability of this method. 
 

 
1 Introduction 

 
The most significant conditions of simulation of mechanical systems are: stability, 

numerical efficiency, distributive computation and wide adaptability. Many methods have 
been proposed and implemented in commercial codes for the simulation of constrained 
mechanical systems; see, e.g. [1-4]. Most of them are based on the Lagrangian equations of 
motion: 
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where  
q is the vector of generalized coordinates, 
v is the vector of generalized velocities, 
M(q) is the mass matrix, 
f(q,v) is the vector of external forces (other than constrain forces), 
g(q) is the vector of (holonomic) constraints, 

q
gqG
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=)(  is the constraint Jacobian matrix, 

λ  is the vector of Lagrange multipliers. 
 
Such methods have two disadvantages: the first is that they are inconvenient for the 

simulation of constrained mechanical systems with a variable number of degrees of freedom. 
And the second is that the dynamics of multibody systems cannot be simulated distributively.  

Our goal is to develop an object-oriented method for the distributed computation of the 
forward dynamics simulations of multibodies with variable number of degrees of freedom. In 



this paper we show the implementation of the method in the case of conservative systems with 
holonomic constraints but it could be also extended for the simulation the non-conservative 
systems with different types of constraints. 

 
 

2 Translation  
 

Step 1: Translation of subsystem 
 
Consider the subsystem of n connected bodies. Let first m bodies be connected with 

external joints with the complete system.  
Let xi denotes the 6-lengths vector of global coordinates and Euler angles of body i. Let X 

denote the n-lengths vector consists 6-lengths xi:  
 .),...,( 1

TT
n

T xxX =
 
Let Xe denote the m-lengths subvector of vector X consisting of coordinates and angles of 

bodies which are connected with external joints. Let Xi denote the (n-m)-length subvector of 
vector X consisting of coordinates and angles of bodies which are not connected with external 
joints. Obviously: 
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Let k denote the number of internal constraints. Thus, differentiating the internal 

constraints 
 TT

k XgXgg )0,...,0())(),...(( 1 ==
 

once, we obtain the constraint equation on the velocity level: 
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Let Q denote the Lagrange forces acting in external constraints. Let Yi denote Lagrangian 

forces assotiated with external forces and torques acting on i-th body. The Lagrangian 
equations: 
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can be written in matrix form: 
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On each time step let's obtain matrix H from matrix G by excluding the dependent rows. 

Obviously, we can represent matrix G as: 
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where the vector a(x) is obtained from the vector g(x) by excluding the same rows as in 
transformation from matrix G to matrix A. Obviously, the Lagrangian equations can be 
rewritten: 
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where  

 .λTT=Λ
 
Differentiating twice the equations of internal constraints:  
 

a(X) = 0, 
 
we get the constraint equations on acceleration level: 
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Substituting the accelerations from the Lagrangian equations, we obtain the dependency 

of internal forces on forces in external links: 
(2) ,VSQ+=Λ

 
where 
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On each time step matrix P can be inverted, because 
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where Mi,Me>0 and H=(Hi, He) is a matrix with independent rows. 
Substituting the internal forces in the equations of motion, we obtain: 

(3) ,RDQX e +=&&
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Step2: Hierarchy 
 
Consider the subsystem S consists of N subsystems S1,S2,…,SN. Let Xe

(i) denote the vector 
of coordinates and angles of bodies which are connected with joints external to Si. We could 
separate Xe

(i) on two subvectors: Xe
(i)= (Xein

(i),Xext
(i)), where Xext

(i) are coordinates and angles of 
vectors of bodies which are included in constraints external to global subsystem S.  



Let us denote the vector of coordinates of bodies with constraints between subsystems 
Xein= (Xein

(i),..,Xein
(N)) and the vector of coordinates of bodies without them  

Xext= (Xext
 (i),..,Xext

 (N)).  
Differentiating the constraints between subsystems S1,S2,…,SN 
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once, we obtain the constraint equatuon on the velocity level: 
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A further differentiation with respect to time results in the constraint equation on acceleration 
level: 
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On each time step let's exclude dependent rows from matrix G and exclude the same rows 

from the vector g(x).  
Let λ denote Lagrange multipliers associated with the constraints between subsystems 

S1,S2,…,SN and Q' denote forces acting in links external to subsystem S. From previous 
hierarchy level we get matrices D(i) and R(i). We can write equations of accelerations 

 
 
  

in the matrix form: 

NiRQDX iiii
e ...1)()()()( =+=&&
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Substituting the accelerations in constraint equation on acceleration level, we obtain the 

dependency of internal forces λ on forces in external links Q': 
 

,VQS ′=λ + (5) 
where 
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Substituting internal forces in the equations of motion, we obtain: 

(6) ,RQDX ext +′=&&
 

where 
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Step3: The complete model description 
 
We should iteratively perform the second steep until the subsystem includes all bodies.  
If our multibody system S is connected with the ground, whose motion is known: 

X0=X0(t), then on the last step we should include the ground in the model.  
Let Xein denote vector with coordinates and angles of bodies which are connected with the 

ground. Differentiating the constraints between system S and the ground 
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once, we obtain the constraint equation on the velocity level: 
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A further differentiation respect to time results in the constraint equation on acceleration 
level: 
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On each time step let's exclude dependent rows from matrix G and exclude the same rows 

from the vector g(x).  
Let λ denotes Lagrange multipliers associated with constraints between the system S and 

the ground. 
The equations of accelerations are: 
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where matrices D and R are known from previous hierarchy level. 
Substituting the accelerations in the constraint equation on acceleration level, we obtain 

the dependency of Lagrange multipliers on ground acceleration: 
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Step4: Generation of constraint Jacobian matrix G 

 
In our method we use the stabilization technique, proposed by Ascher [5], based on the 

inversion of the constraint Jacobian matrix G of the complete system. Obviously due to 
generalized coordinates instead of global coordinates and Euler angles we can significantly 
reduce the dimension of the matrix G. For example the dimension of G of a simple 2D loop 
with n revolute joins expressed using generalized constraints is (n, 2) vs. (3n, 2n) dimension 
of G expressed using global coordinates and Euler angles.  

The main disadvantage of equations of motion expressed in generalized coordinates is that 
they could not be solved distributively. It happends because some of generalized coordinates 
could be included in Lagrangian equations of motion of all bodies. That is why we propose to 
translate the model using common coordinates but to simulate and to stabilize it using 
generalized coordinates.  



Let q denote the vector of generalized coordinates of the complete system. Let v denote 
the vector of generalized velocities. We need to choose such set of generalized coordinates 
that it would be possible to obtain three dependencies in the symbolical form: 
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where X is the vector of global coordinates and Euler angles. 

The first two equations are dependency of global coordinates and velocities. The third is 
the backward dependency of generalized coordinates on acceleration level. 

Using this equation we obtain the constraint Jacobian matrix G expressed in generalized 
coordinates: 
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3 Simulation  

 
The simulation steps in each time step are shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The simulation steps  
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Step1: Using first two equations of (8) we obtain the global coordinates X(tk) and 
velocities . )( ktX&

Step2: Substituting the global coordinates, global velocities and accelerations of the 
ground in equation (7), we obtain the Lagrange multipliers associated with the subsystems of 
the first level hierarchy λ(1)(tk). From the equation of motion we obtain the accelerations 

. )()1(
kein tX&&

Step3: Substituting forces acting in external links in the equations of motion of subsystem 
we obtain the Lagrange multipliers and accelerations of links on the next hierarchy level. 

Step4: Iteratively repeating step 3 we obtain all Lagrange multipliers λ(tk) and the vector 
of all accelerations .  )( ktX&&

Step5: From the third equation of (8) we obtain the vectors of all generalized 
accelerations . )( ktq&&

Step6: Using the ODE integration scheme (e.g. Runge-Kutta) we calculate the vector of 
generalized coordinates and velocities on the next time step ( T

kk tvtq ))(~),(~( 11 ++ .  



Step7: We use stabilization technique, proposed by Ascher [5]. Let z(q,v) denote the 
stabilization function: 
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Then the vector of stabilized generalized coordinates and velocities (q(tk+1),v(tk+1))T could 

be obtained from ( T
kk tvtq ))(~),(~( 11 ++  by the double step: 
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4 Example  
 

We have performed a number of 
calculations for the problem of 4 
connected bars with revolute joints 
shown in Fig. 2. The length of all bars is 
equal to one meter, the mass is equal to 
one kg.  

Fig. 2: Closed-loop system of 4 connected bars 
with revolute joints  

Obviously the system has four 
degrees of freedom: the Euler angles 

4321 ,,, ϕϕϕϕ .  
Let’s simulate motion of the system 

under the action of the gravitational 
force, when time changes from null to 10 
seconds. Simulation was performed with 
Runge-Kutta method of the second order 
with a fixed time step equal to 0.01s. 

Initial conditions of the system are: 
 
 

0(0)(0) (0)(0)

π/45(0) π/4,3(0)  π/4,(0)π/4,(0)
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===−=
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The motion of the system will be the oscillations shown in Fig. 3.  
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The diagram shown in Fig. 4 illustrates the drift of the model (maximal error in the joints). 

Obviously our stabilization technique is highly effective and limits the drift to 5×10-15m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
5 Summary  

 
In this paper, we propose the modular development of the direct violation correction 

method for the distributed computation of the forward dynamics simulations of constrained 
mechanical systems.  

In our method we widely combine the calculation using global coordinates and Euler 
angles and calculation using generalized coordinates. Calculation of accelerations and internal 
forces are done in global coordinates and Euler angles that allow us to distribute this process. 
For the stabilization we use generalized coordinates that makes the method numerically 
efficient. 

The example shows that stabilization technique is highly effective and the drift of the 
system is limited for a long period of time. 
 

 

Fig. 4: The drift of the model 
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ϕ1

ϕ2

ϕ3



 
References 
 
[1] J. Baumgartle, Stabilization of Constraints and Integrals of Motion in Dynamical Systems, 
Comp. Math. Appl. Mech. Eng. 1 (1972), 1-16 
[2] C. Führer and R. Schwertassek. Generation and Solution of Multibody System Equations, 
J. Non-Linear Mechanics 25 (1990), 127-141 
[3] E. Haug and R. Deyo. Real-Time Integration Methods for Mechanical System Simulation, 
NATO ASI Series, Springer 1991 
[4] Khan, W. A., and V. Krovi, V., Comparison of Two Alternate Methods for Distributed 
Forward Dynamic Simulation of a Four-Bar Linkage, Proceedings of the NSF Workshop on 
Fundamental Issues and Future Research Directions for Parallel Mechanisms and 
Manipulators, Eds. C. M. Gosselin and I. Ebert-Uphoff, Quebec City, Canada, October 3–4, 
2002. 
[5] U. Ascher, H. Chin, L. Petzold, S., Reich Stabilization of Constrained Mechanical 
Systems with DAEs and Invariant Manifolds, Mech. Struct. and Mach., vol. 23, no. 2, pp 405-
437, 1995 

 


	Method for Distributed Forward Dynamic Simulations of 
	Constrained Mechanical Systems 
	 
	 
	1 Introduction 
	2 Translation  
	 
	3 Simulation  

	 
	 
	4 Example  
	 
	 
	5 Summary  



