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ABSTRACT 
 

This paper presents a recursive algorithm for calculating the forward dynamics of general rigid-body 
systems using a subsystem approach that is well suited for parallel processing. It is an exact, non-
iterative algorithm and is applicable to mechanisms with any joint type and any topology, including 
branches and kinematic loops. The calculation of accelerations has O(log(n)) time complexity on O(n) 
processors, that is comparable with the fastest available parallel algorithms. We developed an object-
oriented simulation tool that is based on our method. The test simulation of a car suspension system 
with the closed-loop structure shows the stability of our algorithm.  
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1 INTRODUCTION 
 
The development of a tool for simulation of mechanical systems is a sophisticated problem. 
Simulating software should satisfy the wide set of conditions: numerical efficiency, stability, 
distributivity, flexibility, interaction with other tools, distributed development, etc.  

Trying to satisfy all demands, the modern simulation tools use the object-oriented method. But 
though the object-oriented approach has a huge number of advantages, this type of modularization in 
most cases is given up during simulation, especially for mechanical systems because common 
modelling formulations use access to the complete system to calculate all accelerations needed. From 
the other hand, there are big advantages of a simulation on the basis of subsystems:  

1.  Subsystems can be modelled, tested and compiled. Then they can be used in a way similar to 
software components that encapsulate their internal structure and can be connected via interfaces. 

2.  Critical effects like coulomb friction, backslash etc. can be encapsulated inside a subsystem. 
3.  Subsystems are ideal candidates for the partitioning of large systems on multiple processors. 
Our goal is to create an object-oriented method for the distributed simulation of multibodies 

with variable number of degrees of freedom. Unlike of a huge number of other methods, we keep the 



block-module concept during simulation. Based on our method we develop the simulation software 
that can be implemented for the simulation of mechanical parts of mechatronic systems. 

 
 
 

2 DESCRIPTION OF METHOD 
 
In our method we perform the simulation using the hierarchy of submodels. The submodels of the first 
level consist of connected bodies. The submodels of next levels (called children) consist of connected 
submodels (called parents). Since the main number of calculations proceeds inside submodels, it 
follows that we can easily distribute the simulation on several processors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Simulation steps 
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During the simulation on each time step we perform several operations, shown in Fig. 1:  
1. Calculation of absolute coordinates and velocities. Using the current value of generalized 

velocities w and coordinates p we consequently calculate the absolute coordinates q and velocities v.  
2. Hierarchical generations of equations of motion. A subsystem gets from its parents their 

dependency matrices D(i) and R(i): 
 
 
 
where  

)(i
ev  is the vector of accelerations of i-th parent’s bordering bodies, 

Q(i) is the vector of forces acting in i-th parent’s external links. 
Here we call a body bordering to a subsystem if it is connected with the external joints and it is 

called internal if it does not have external constraints.  
The subsystem generates matrices D and R using the equation of constraints connecting the 

parents. Here D and R are the dependency matrices:  
 
 
 
where  

ev  is the vector of accelerations of subsystem’s bordering bodies, 
Q is the vector of forces in subsystem’s external links. 

Then the subsystem transmits D and R to its children. 
3. Backward hierarchical calculation of absolute accelerations. A subsystem gets the current 

value of Q from its child. Using Q we calculate ev . Then for each parent i the subsystem calculates 
Q(i) and transforms it to the parent. After we finish, we obtain the absolute acceleration of all bodies. 

4. Calculation of generalized accelerations. Using the current value of absolute accelerations 
v , we consequently calculate the generalized accelerations w . 

5. Calculation of the generalized coordinates and velocities on the next time step. Using a 
favourite ODE integration scheme (e.g. Runge-Kutta or multistep) we obtain the value of 

)~~( 11 ++ nn vq  on the new time step. 
6. Post-stabilization of generalized coordinates and velocities. We use the stabilization 

technique proposed by Ascher, Chin [1]. Their method guarantees the asymptotic stability of 
solution. Our simulation example shows the stability of the technique.  

The calculation of accelerations has O(n/k) time complexity on k<<n processors or O(log(n)) 
time complexity on O(n) processors, that is comparable with the fastest available parallel algorithms 
[3, 2]. 

As you see, we use the combination of generalized and absolute coordinates trying to maximise 
the effectiveness of the method. Using absolute coordinates we can performe distributive calculation 
of forces and accelerations. But using generalized coordinates we perform numericaly efficient 
integration and stabilization.  

The global computation complexity of our method is O(n·D3+t2·s), where n is the total number 
of bodies, D is the upper limit of constraints in a subsystem, t is the number of closed loops and s is 
the total number of bodies in loops.  

 
 
 

3 IMPLEMENTATION OF METHOD 
 

Our tool is based on a strictly capsulated block-module concept proposed by Kasper [4]. This 
approach has some significant advantages: flexibility, top-down design, distributed and quick 
development. Using this approach we implemented our software in Visual Basic 6.0. 
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3.1 Basic objects 
 
In our tools are used eight basic objects:  
1. Timer object is used for the identification of the current time inside of a simulating model. 
2. Ground object simulates is the body whose motion is predefined. There is no restriction on the 

number of ground objects inside of the complete model. 
3. Body object simulates the body whose motion is not predefined.  
4. Body output is used for the working with a body outside of the submodel where the body was 

defined. This is possible because each output object (called child) inherits the parameters (i.e. absolute 
coordinates, velocity etc.) of its parent (the body or the other output). If output’s parameters change 
then the output object automatically changes corresponding parameters of its parent. 

5. Generalized force object describes is an external force or external torque acting on bodies.  
6. Constraint object describes a holonomical constraint connecting several bodies.  
7. Basic subsystem object is a subsystem of the lowest level of hierarchy, that can include body 

objects, ground objects, force objects and output objects.  
8. Derived subsystem object is a subsystem of a high level of hierarchy that can include other 

subsystems, ground objects, force objects and output objects.  
 
 

3.2 Derived objects 
 
The basic objects are parents of derived objects: different types of joints, forces, bodies and 

subsystems. Using Constraint class we developed the four most frequent types of joints: Revolute joint 
Prismatic joint, Ball joint and Rigid connection. 

Using Generalized force class we develop three types of generalised forces: Gravity force and 
Spring Damper. 

 
 
 

4 EXAMPLE OF SIMULATION 
 
We have performed a number of calculations for the problem of the car suspension shown in Fig. 2. 
This example perfectly illustrates all advantages of our method: the object-oriented simulation of 
multibodies, the stabilization of a closed-loop system, the numerical efficiency of the combination of 
absolute and generalized coordinates.  

From the physical point of view the car system consists of the car body (marked in Fig. 2 by 
grey) connected with two suspensions (marked by purple and by yellow) by revolute joints with y-axes 
of rotation, two wheels (marked by red) connected with suspensions by revolute joints with x-axes of 
rotation. Each wheel is connected with a ground by a string. A suspension consists of the damper and 
the beam, where damper’s piston is connected with the beam by the revolute joint (the axe of the joint 
is perpendicular to the frontal plane). 

While the construction of the car model we partition the complete system on several subsystems:  
1. WheelSubsystem is a basic subsystem consists of Body (the steel ring), Ground, String 

and WheelOutput. 
2. DamperSubsystem is a basic subsystem that consists of two Body objects (Cylinder 

and Piston), two Output objects (CylinderOutput and PistonOutput), PrismaticJoint and 
SpringDamper. 

3. SuspensionSubsystem is a derived subsystem consisting of Damper, Beam, 
RevoluteJoint, and two Outputs (CylinderOutput and BeamOutput). 

4. CompleteSystem is a derived subsystem that consists of Beam subsystem (car body), 
two WheelSubsystem objects, RightSuspension, LeftSuspension, six RevoluteJoint 
objects and Gravity.  



We keep this partitioning during the forward dynamic simulation of the car system.  
 

Figure 2: Car system 
 

We choose the time interval to be [0,1.3]. Simulation was performed with Runge-Kutta method 
of the second order with the fixed timestep equal to 0.01s.  

In Fig. 3 is shown the oscillation of the car trunk.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Z-coordinate of CarBody 
 
In Fig. 4 shows the drift of the model. The simulation data shows that the algorithm is stable and 

the model's drift is constant and has the order of the computation accuracy.  
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Figure 4: Drift of the model 
 
 
 

CONCLUSION 
 

We developed the recursive object-oriented algorithm for calculating the forward dynamics of general 
rigid-body system using a subsystem approach that is well suited for parallel processing. It is an exact, 
non-iterative algorithm, and is applicable to mechanisms with any joint type and any topology, 
including branches and kinematic loops. The calculation of accelerations has O(log(n)) time 
complexity on O(n) processors, that is comparable with the fastest available parallel algorithms.  

We performed the implementation of our method and developed the object-oriented tool for 
simulation of multibody systems. We created objects that simulate some frequent types of joints and 
generalized forces: 

The experimental data shows the stability of our method. The drift of closed-loop structures is 
limited for a long period of time. Thus, we obtain the experimental proof that our tool can be 
implemented for the simulation of large constrained multibody systems. 
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