
MULTIBODY DYNAMICS 2005, ECCOMAS Thematic Conference
J.M. Goicolea, J.Cuadrado, J.C.García Orden (eds.)

Madrid, Spain, 21–24 June 2005

MODULAR FORWARD DYNAMIC SIMULATION OF
CONSTRAINED MECHANICAL SYSTEMS

Roland Kasper∗, Dmitry Vlasenko†

∗ Otto-von-Guericke-University Magdeburg
Institute of Mechatronics and Drives (IMAT)

Universitätsplatz 2, D-39106 Magdeburg, Germany
e-mail: Roland.Kasper@mb.Uni-Magdeburg.de

† Otto-von-Guericke-University Magdeburg
Institute of Mechatronics and Drives (IMAT)

Universitätsplatz 2, D-39106 Magdeburg, Germany
e-mail: Dmitri.Vlasenko@Masch-Bau.Uni-Magdeburg.DE

Keywords: Modular modelling, Dynamics Simulation, Multibodies.

Abstract. This paper presents a recursive algorithm for calculating the forward dynamics of
general rigid-body systems using a subsystem approach. It is an exact, non-iterative
algorithm that is applicable to mechanisms with any joint type and any topology, including
branches and kinematic loops. As stabilization is done also in a modular way, the method is
well suited for distributed processing. The calculation of accelerations has O(log(n)) time
complexity on O(n) processors, that is comparable with the fastest available parallel
algorithms. The method was implemented in an object-oriented simulation tool, which can
translate models from Autodesk Inventor.

 1

Roland Kasper, Dmitry Vlasenko

1 INTRODUCTION

The development of a tool for simulation of mechanical systems is a sophisticated problem.
Simulating software should satisfy the wide set of conditions [1]: numerical efficiency,
stability, distributivity, flexibility, interaction with other tools, distributed development, etc.

Trying to satisfy all demands, modern simulation tools use the object-oriented method [2].
But though the object-oriented approach has a huge number of advantages, this type of
modularization in most cases is given up during simulation, especially for mechanical systems
because common modelling formulations use access to the complete system e.g. to calculate
all accelerations needed. On the other hand, there are big advantages of a simulation on the
basis of subsystems:

• Subsystems can be modelled, tested and compiled. Then they can be used in a way
similar to software components that encapsulate their internal structure and can be
connected via interfaces.

• Critical effects like coulomb friction, backslash etc. can be encapsulated inside a
subsystem.

• Subsystems are ideal candidates for the partitioning of large systems on multiple
processors.

This paper describes an object-oriented method for the distributed simulation of
multibodies with variable number of degrees of freedom. Unlike of a huge number of other
methods, the described method keeps the block-module concept during simulation. The
simulation of a mechanical subsystem has O(log(n)) time complexity on O(n) processors, that
is comparable with the fastest available parallel algorithms [3, 4].

The method was implemented in the simulation software [5] that can be used for the
simulation mechanical parts of mechatronic systems.

Also is developed an integration of the software with Autodesk Inventor. Design
engineers can specify geometric and material data of simulation models inside Inventor and
then translate it into the simulation tool. This approach minimise the model’s development
cost and training of the design engineers.

2 DESCRIPTION OF METHOD
The base idea of the method is to perform the simulation of mechanical systems using the

hierarchy of submodels that builds up the complete system. The submodels of the first level in
general consist of connected bodies. The submodels of next levels (called children) consist,
without loss of generality, of connected submodels (called parents). Since the main number of
calculations proceeds inside of submodels, it follows that the simulation can be distributed
easily on several processors. During the simulation on each time step the following tasks,
shown in Fig. 1, have to be performed:

1. Distributed calculation of absolute accelerations .)(ntV&

2. Calculation of the absolute coordinates and velocities on the next time step. Using
a favourite ODE integration scheme (e.g. Runge-Kutta or some multistep method),
the value of absolute coordinates)(~

1+ntX and velocities)(~
1+ntV on the new time

step can be obtained.
3. Distributed stabilization of coordinates and velocities .)(1+ntX)(1+ntV

 2

Roland Kasper, Dmitry Vlasenko

Figure 1. Simulation steps

3 DISTRIBUTED CALCULATION OF ACCELERATION

The Newton-Euler equation of motion describing the dynamics of constrained multibody
system can be written in the form:

 (1)
0g(X)

λXGVf(X,VM(X)
VX

=
−=

=

)() T&

&

where
X is the vector of absolute coordinates of bodies
V is the vector of absolute velocities
M(X) is the mass matrix
f(X,V) is the vector of external forces (other than constrain forces)
g(X) is the vector of (holonomic) constraints

X
gXG

∂
∂

=)(is the constraint Jacobian matrix

λ is the vector of Lagrange multipliers.

Trying to find acceleration from (1) in a non-distributed way, the inverse of the matrix

will be needed that is a numerical-expensive procedure, proportional to the cube of
the number of simulating bodies. That is why the distributed calculation of acceleration
shown in Fig. 2 is preferred. For big good-partitioned models this method costs O(n)
numerical operations, where n denotes the total number of bodies in the simulation model.

TGGM 1−

 3

)(),(nn tt VX

)(ntV&

)(~),(~
11 ++ nn tt VX

)(),(11 ++ nn tt VX

Calculation of
accelerations

Integration

Stabilisation

Roland Kasper, Dmitry Vlasenko

Figure 2. Calculation of acceleration steps

3.1 Hierarchical generations of equations of motion
Each subsystem gets from its parents their dependency matrices D(i) and R(i):

)()()()(RQDv iiii
e +=&

where
)(i

ev& is the vector of accelerations of the i-th parent’s bordering bodies
)(Q i is the vector of forces acting in the i-th parent’s external links.

For example, in Fig. 2 the subsystem S1 gets matrices D(1,1), R(1,1), D(2,1), R(2,1) from its

parents S1,1, S1,2 etc. Here a body is called bordering to a subsystem, if it has constraints in the
subsystem and is connected with external joints. A body is called internal to a subsystem, if it
has constraints in the subsystem and is not connected to any external joint.

The subsystem generates matrices D and R using the equation of constraints connecting
the parents. Here and D R are the dependency matrices:

RDQve +=&

where

 4

D(1) R(1)

)1(Q

)1,1(Q)2,1(Q)1,2(Q)2,2(Q

D(1,1) R(1,1) D(1,2) R(1,2) D(2,1) R(2,1) D(2,2) R(2,2)

)(),(nn tt VX

)(ntV&

S1,1 S1,2 S2,1 S2,2

S1 S2

S

S1 S2

S1,1 S1,2 S2,1 S2,2

)2(Q

D(2) R(2)

Roland Kasper, Dmitry Vlasenko

ev& is the vector of accelerations of subsystem’s bordering bodies
Q is the vector of forces in subsystem’s external links.

Then the subsystem transmits and D R to its child.

3.2 Calculation of absolute accelerations on the top of hierarchy
The subsystem of the highest level calculates Q(i) for each parent i and transmits it to the

parent (e.g. in Fig. 2 the subsystem S transmits Q(1), Q(2) to its parents S1, S2 correspondingly).

3.3 Backward hierarchical calculation of absolute accelerations
Subsequently, each subsystem gets the current value of Q from its child (e.g. in Fig. 2 the

subsystem S1,2 gets Q(2) from its child S1). Using Q the subsystem calculates . Then for each
parent i the subsystem calculates Q

ev&
(i) and transmits it to the parent. Finally the absolute

accelerations of all bodies are obtained.

4 ALGORITHM OF DISTRIBUTED POST-STABILIZATION

Using Runge-Kutta method of the fourth order, the value of)(~),(~
11 ++ nn tt VX can be

obtained on the new time step. To avoid drift errors, it is necessary to minimize the drift
of the constraints on the new time step. This can be achieved by the post-stabilization of
coordinates, based on Chin method [6]:

 (2))ˆ(ˆ
1n1n1n XZXX +++ −=

Here Z is the displacement stabilizing constraints in the simulation system:

 (3) gGZ +=

where
 is the vector of constraints)ˆ

1nXg(g +=

X
gXGG 1n ˆ)ˆ(

∂
∂

== + is the constraint’s Jacobian matrix

 is the Moore-Penrose inverse of matrix G . +G

Obviously, the explicit calculation of a pseudo-inverse is a numerical very expensive

procedure. Furthermore directly building up the matrix G and its inversion is a global process
that conflicts with the idea of distributed simulation. One way to overcome this is to distribute
the post-stabilization of constraints. In the method proposed here, the distributed and
undistributed stabilization calculates the same vector Z, but the distributed way is more
effective. For big good-partitioned models the distributed stabilization costs O(n) operations,
where n denote the total number of bodies in the simulating model. That is much less than the
complexity of non-distributed stabilization of absolute coordinates, which needs O(n3).

It should be also noted that for good-partitioned models the distributed stabilization has
O(log(n)) time complexity on O(n) processors, that gives the total O(log(n)) time complexity
of the simulation method.

Now the details of this procedure will be given more precisely.

 5

Roland Kasper, Dmitry Vlasenko

4.1 Definitions
Consider an arbitrary body from the simulation model of a mechanical system. Let J

denote the array of joints that are connected to the body. Let joints from J be included in
subsystems S1, S2, … , Sm, that are situated on different hierarchy levels. Let x=(x1 x …x7)
denote the 7-length vector of body’s coordinates, where x1, x2, x3 are coordinates of the
body’s centre of mass and x4, x5, x6, x7 are Euler parameters of the body. Let g0 denote the
drift of normalization condition:

176540 −+++= xxxxg

Then the stabilization of x can be written down as:

)...(~~)()2()1()0(mzzzzxzxx 1n1n ++++−=−= ++

where
 z(0) is the displacement stabilizing normalization condition.
 z(i) is the displacement stabilizing constraints in subsystem Si (i>0).

The vector z(0) is called internal body’s displacement and z~ (m)(2)(1) z...zz +++=

external body’s displacement. The distributed calculation of stabilization displacements Z(i) is
shown in Fig. 3:

Figure 3. Stabilization steps

 6

)(~),(~
11 ++ nn tt VX

S(1,1) B(1,1) S(1,2) B(1,2)

S(1) B(1) S(2) B(2)

)1(~Z/)2(~Z/

)1,1(~Z/
)2,1(~Z/)1,2(~Z/)2,2(~Z/

)(),(11 ++ nn tt VX

Body1 Body2 Body3 Body4

S1
S2

S

S1
S2

Body1 Body2 Body3 Body4

S(2,1) B(2,1) S(2,2) B(2,2)

Roland Kasper, Dmitry Vlasenko

4.2 Generations of equations of bodies’ normalized conditions
A body calculates dependency matrices S and B:

BzSz(0) += ~

where
z(0) is internal body’s displacement
z~ is external body’s displacement.

Then the body transmits S and B to its submodel of the first level of hierarchy (e.g. in Fig. 3
body 1 transmits S(1,1), B(1,1) matrices to its parent – the subsystem S1).

4.3 Forward hierarchical generations of stabilization’s equations
Consider a stabilization of constraints in an arbitrary subsystem. Let the subsystem include

joints, stabilizing k bodies: body1, body2, … , bodyk. It is necessary to calculate the
dependency of vector , stabilizing constraints in the subsystem, from
the vector of external displacements

(TT
k

TT zzzZ ...21=)
Z~ , stabilizing constraints in subsystems of higher levels.

The subsystem gets from its parents their dependency matrices S(t) and B(t):
)()()()(BZSZ tttt

i += ~

where
)(Z t

i is the vector of displacement stabilizing constraints in t-th parent.
)(Z t~ is the vector of external displacements acting on bodies bordering to t-th parent.

Then the subsystem generates dependency matrices S and B using the equation of

constraints:

BZSZ += ~

where
Z is the vector of displacement stabilizing subsystem’s constraints
Z~ is the vector of external displacements acting on bodies bordering to the subsystem.

Then the subsystem transmits S and B to its child (e.g. in Fig. 3 the subsystem S1 transmits

S(1), B(1) matrices to its parent – the subsystem S).

4.4 Backward hierarchical calculation of displacements and the stabilization of
constraints

A subsystem gets the current value of Z~ from its child. Using Z~ the subsystem calculates
. Then the subsystem changes the coordinates of subsystem’s bodies: (TT

k
TT zzzZ ...21=)

kii BodyBody zxx −= .:.

 7

Then for each t=1 ... k the subsystem calculates and transmits it to the t-th parent.)(Z t~

Roland Kasper, Dmitry Vlasenko

4.5 Stabilization of bodies’ normalization conditions
A body gets the current value of from its subsystem of first level of hierarchy. Using

the body calculates and changes coordinates:
z~ z~

)0(z
)0(.:. zxx −= BodyBody

4.6 Distributed stabilization of constraints on velocity level
Because of the discretization of the model there is a need to stabilize also the constraints

on the velocity level:
GV== g&0

The stabilization of velocities is performed in similar way, except the stabilization of
internal bodies’ constraint and is omitted in this paper.

5 EQUATIONS OF DISTRIBUTED POST-STABILIZATION
After the description of the processing flow, in the following a detailed mathema-

tical basement of the algorithm of the distributed post-stabilization will be given.

5.1 Equations of bodies’ stabilization
The stabilization vector of the complete system can be calculated using the formula

gGGGZ TT 1)(−=

where
)ˆ

1nXg(g += is the global vector of simulation system’s constraints

X
gXGG 1n ˆ)ˆ(

∂
∂

== + is the constraint Jacobian matrix.

Let M denote the vector:

g)(GGΜ 1T −= (4)

Then Z is equal to:

MGZ T= (5)

Equation (4) can be rewritten as:

)M(GGg T= (6)

 8

To simplify the proof it is helpful to reorder the vector g and the rows of the
correspondent matrix G. From the object-oriented point of view, bodies can be considered as
subsystems of zero level of hierarchy. Then normalized conditions of bodies can be rewritten
as constraints of subsystems of zero level. Let the simulated system consist of N0 bodies, N1
submodels of the first level, N2 derived submodels of the second level etc. Let C be the
sequence of subsystems C = { , ,..., ,…, ,..., }, where denotes the t-th
subsystem of k-th level and L denotes the number of levels of submodels. The vector of

constraints g is reordered corresponding to C:

)0(
1S)0(

2S)0(
1NS)(

1
LS)(L

NL
S)(k

tS

()TTL
N

TL
NN L

gg)()()0()0(
1

11
ggg = , where

 denotes the vector of constraints of t-th subsystem of k-th level.)(k
tg

Roland Kasper, Dmitry Vlasenko

Let all bodies be connected with joints. Then matrices G, g can be rewritten as:

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0

00 ~...~~
...00

............
0...0
0...0

~

...

21

2

1

)0(

)0(
2

)0(
1

N

NNg

g
g

GGG
G

G
G

G

g

g

where

t

t
t x∂

∂
=

)0(gG is the Jacobian matrix of t-th body.

 is the vector of constraints of higher levels of hierarchy. (TTL
N

T

L
...)()1(

1
~ ggg =)

Matrix M can be divided in an analogue way into subvectors:

()TT
NMM MM ~...

01=

From equation (5) it can be obtained:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

+
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

+
=

00N N

11

zz

zz

MGG

MGG
Z

~

~

~~

~~

000

111

MM
T
N

T
NN

TT

M

M

The meaning of is the displacement of body t stabilizing its normalized T
ttt M Gz =

conditions, i.e. internal body’s displacement. The meaning of is the displacement MGz ~~~ T
tt =

of body t stabilizing constraints of higher levels, i.e. external body’s displacement.
Then (6) can be rewritten as:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+++
+

+

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

MGGGGGG
MGGGG

MGGGG

g
~~~~...~

~~

~~

~
1111

11111

)0(

)0(
1

00

000000
TT

NN
T

T
NNN

T
NN

TT

N

MM
M

M

g

g
MM

 (7)

where ( )
0

~...~~~
21 NGGGG =   is the Jacobian matrix of constraints of higher levels.  

Using definitions of  andtz tz~ , the new system of equations is obtained: 

ZGzGzGg

zGzG
~~~...~~
...1~

0011

0
)0(

+++=

=+=

NN

ttttt Ntg
 (8)

where is the displacement of all bodies stabilizing constraints of higher (TTT
0N1 z...zZ ~~=)

levels.

 9

Therefore, for each t the dependency of the t-th body’s internal displacement on the tz
external body’s displacement tz~ can be expressed as:

Roland Kasper, Dmitry Vlasenko

ttt BzSz t += ~ (9)

where

+

+

=

−=

tt

tt

g GB

GGS
)0(

Here is the Moore-Penrose inverse of matrix . +
tG tG

The new equation can be obtained as the result of substitution (9) in the lower part of (8):

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+
=+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

00

11 ~~

..0
.........
0...

~~~~~

NN B

B
GZ

ES

ES
GZG

z

z
Gg

0N

1

MM  

That can be rewritten as:  

BGZDGg ~~~~~~ +=  (10)

where D~  is a symmetric block-diagonal matrix. 

5.2 Equations of a subsystem stabilization  

Consider a subsystem . Let  denote the vector of constraints in the subsystem. Then )1(
1S ig

vector  can be rewritten as  g~

( )TTT
i ggg ˆ~ =  

Let Xe denote the vector of coordinates of subsystem’s bordering bodies, Xi denote the 
vector of coordinates of subsystem’s internal bodies. Let  denote the vector of coordinates UX̂
of bodies that do not have constraints in the subsystem.  

Reordering coordinates allows rewriting (10) in the form: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

U

e

i

Uee

ieii

U

e

i

U

ee
T
ie

ieii

Uee

ieii

B
B
B

GG
GG

Z
ZZ

Z

D
DD
DD

GG
GG

g
gi

ˆ
ˆˆ0
0

ˆ

~

ˆ00
0
0

ˆˆ0
0

ˆ
 (11)

where  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

==
e

i

i

i
ieiii X

g
X
g

GGG  is the Jacobian matrix 

 is the vector of displacement stabilizing subsystem’s constraints ( TT
e

T
iA ZZZ = )

 Z~  is the vector of displacement of bordering bodies stabilizing external constraints  
  is the vector of displacement of external bodies stabilizing external constraints. UẐ

The goal is to express  as the function of . Then  can be substituted in the lower AZ UẐ AZ
part of (11) and the equation that has the same form as (10), can be obtained, but with less 
number of displacements.  

 

 10

 



Roland Kasper, Dmitry Vlasenko  

The matrix equation (11) can be transformed to the system of equations: 

UUUUU

i
T

iii

BGBGZDGZDGZDGg

BGZDGZDGg
ˆ~ˆˆˆˆ~ˆˆˆ

~

++++=

++=

eeeeeeeAeee

AeAA  (12)

where  

( )
( )TT

e
T
iA

ee
T
iee

ee
T
ie

ieii
A

BBB

DDD

DD
DD

D

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 

Finally, the desired dependency is obtained from the first equation of (12): 

BZSZ += ~
A  (13)

where 

)BG(g)D(GB

DG)D(GS

iiii

T
iii

A

e

−−=

−=
+

+

 (14)

Substitution  in second equation of AZ (12) leads to the equation:  

UUUUU BGZDGBBDGZDSDGg ˆˆˆˆˆ)(ˆ~)(ˆˆ +++++= xeeeeeeee  

Therefore, 

BGZDGg ˆ~ˆˆˆˆ +=  

where 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

=

U

xe

u

eee

Uee

Z
Z

Z
B

BBD
B

D
DSD

D

GGG

U
ˆ

~
ˆ

ˆ
ˆ

ˆ0
0ˆ

ˆ~ˆ

 

So, an equation of the same form as  (10) can be obtained, but now it does not include 
subsystem’s constraints and subsystem’s internal bodies. Obviously, the same procedure can 
be consequently implemented for all subsystems in C. From (14) follows that matrices S and 
Β can be calculated using only the information about subsystem’s constraints (gi, Gi matrices) 
and information about sybsystem’s parents (  matrices and some additional matrices, )()( BS tt ,
that are needed for the calculation of BBA, Di, De). 

 
 

 11

 



Roland Kasper, Dmitry Vlasenko  

5.3 Equations of stabilization on the highest level of hierarchy  
Consequently repeating the procedure described in the previous chapter, gives the 

equations of displacements in the subsystem of the highest level of hierarchy: 

BGZDGg ˆ~ˆˆˆˆ +=  

where  
ĝ  is the vector of subsystem’s constraints 

X
gG

∂
∂

=
ˆˆ  is the Jacobian matrix. 

X is the vector of subsystem’s bodies  
Ẑ  is the vector of displacement stabilizing subsystem’s constraints 
 
Therefore, the value of Z  is obtained: ˆ

)ˆ~ˆ()ˆˆ(ˆ BGgDGZ −= +  

By k denote the number of subsystem’s parents. Let  be the vector of external )(Z t~

displacements acting on bodies bordering to the t-th parent (t=1…k). Obviously,  is a )(Z t~

corresponding subvector of Z . The subsystem calculates  and transmits it to the t-th ˆ )(Z t~

parent.  
Now (13) can be used for the backward hierarchical calculation of displacements. A 
subsystem gets Z~  from its child and calculates . Then for each parent the subsystem 
generates the correspondent subvector of  and transmits it to the parent. At the end of the 
process, the global vector of displacement Z is generated. 

AZ

AZ

 12

6 EXAMPLE OF SIMULATION 
It was performed a simulation of the 6-bodies pendulum shown in Fig. 4.  This example 

illustrates all advantages of the method: the object-oriented simulation of multibodies, the 
stabilization of a closed-loop system and the numerical efficiency of the distributed 
simulation. 

The pendulum was modelled in Autodesk Inventor and converted to a simulation model. 
The simulation time interval was choosen to be [0s, 20s]. The simulation was performed with 
Runge-Kutta method of the fourth order with the fixed time step equal to 0.005s.  

The pendulum consists of two identical subsystems (marked by light grey and by dark 
grey) connected with each other and with the ground (marked by black) by revolute joints. 
Each subsystem consists of three bodies connected by revolute joints. Obviously, subsystems 
are stiff and the complete system has only two degrees of freedom. 

 
 
 
 
 
 
 
 
 
 



Roland Kasper, Dmitry Vlasenko  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 6-Bodies pendulum 

Fig. 5 shows the deviation of degrees of freedom from start values. 
 

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
0 2 4 6 8 10 12 14 16 18 20

Figure 5. Oscillation of the pendulum 

 
In Fig. 6 the drift of the distributed stabilization is presented. Experimental data show that 

the algorithm is stable and the drift of the model is about the accuracy of model’s definition.  

 13



Roland Kasper, Dmitry Vlasenko  

Figure 6: Drift of the model 

 
While the distributed stabilization four 18x18 matrices and two 12x12 matrices have to be 

inverted, which needs about 5·106 arithmetic operations. That is much more numerical 
efficient than the undistributed stabilization of absolute coordinates (then the pseudo-inverse 
of a 54x42 matrix and a 54x36 matrix has to be calculated, which needs about 3·107 
arithmetic operations).  

7 CONCLUSION 
This paper presents a new recursive object-oriented algorithm for calculating the forward 

dynamics of general rigid-body system using a subsystem approach that is well suited for 
distributed processing. It is an exact, non-iterative algorithm, and is applicable to mechanisms 
with any joint type and any topology, including branches and kinematic loops. The simulation 
of a mechanical subsystem has O(log(n)) time complexity on O(n) processors, that is 
comparable with the fastest available parallel algorithms.  

It was performed the implementation of the method and developed an object-oriented tool 
for simulation of multibody systems. Also is developed an integration of the software with 
Autodesk Inventor. Design engineers can specify geometric and material data of simulation 
model inside Inventor and then translate it into the simulation tool. This approach minimise 
the model’s development cost and training of the design engineers. 

Experimental data show the stability of the method. The drift of closed-loop structures is 
limited for a long period of time. Thus, the experimental proof that the tool can be 
implemented for the simulation of large constrained multibody systems is obtained. 

 

 14

0 2 4 6 8 10 12 14 16 18 20
1.102

1.104

1.106

1.108

1.11

1.112

1.114
x 10-13



Roland Kasper, Dmitry Vlasenko  

REFERENCES  
[1] Cellier, F.E. (1996), Object-Oriented Modeling: Means for Dealing With System 

Complexity, Proc. 15th Benelux Meeting on Systems and Control, Mierlo, The 
Netherlands, pp.53-64., 1996 

[2] Cellier, F.E., H. Elmqvist, and M. Otter (1995), Modeling from Physical Principles, The 
Control Handbook (W.S. Levine, ed.), CRC Press, Boca Raton, FL. 

[3] Anderson, K. and Duan, S., 2000, Highly parallelizable low-order dynamics simulation 
algorithm for multi-rigid-body systems, AIAA Journal on Guidance, Control and 
Dynamics 23, no. 2, pp. 355-364. 

[4] Featherstone, R., 1999, A divide-and-conquer articulated-body algorithm for parallel 
O(log(n)) calculation of rigid-body dynamics, part 2: trees, loops and accuracy, Int. 
Journal of Robotics Research 18, no. 9, pp. 876-892. 

[5] R. Kasper, D. Vlasenko. Method for distributed forward dynamic simulation of 
constrained mechanical systems. Proceedings of the Eurosim Conference, Paris, 2004. 

[6] U. Ascher, H. Chin, L. Petzold and S. Reich. Stabilization of constrained mechanical 
systems with DAEs and invariant manifolds. The Journal of Mechanics of Structures 
and Machines, 23(2), 135-157(1995). 

 15

 


