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Abstract. This paper presents a recursive algorithm for calculating the forward dynamics of 
general rigid-body systems using a subsystem approach. It is an exact, non-iterative 
algorithm that is applicable to mechanisms with any joint type and any topology, including 
branches and kinematic loops. As stabilization is done also in a modular way, the method is 
well suited for distributed processing. The calculation of accelerations has O(log(n)) time 
complexity on O(n) processors, that is comparable with the fastest available parallel 
algorithms. The method was implemented in an object-oriented simulation tool, which can 
translate models from Autodesk Inventor.  
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1 INTRODUCTION  

The development of a tool for simulation of mechanical systems is a sophisticated problem. 
Simulating software should satisfy the wide set of conditions [1]: numerical efficiency, 
stability, distributivity, flexibility, interaction with other tools, distributed development, etc.  

Trying to satisfy all demands, modern simulation tools use the object-oriented method [2]. 
But though the object-oriented approach has a huge number of advantages, this type of 
modularization in most cases is given up during simulation, especially for mechanical systems 
because common modelling formulations use access to the complete system e.g. to calculate 
all accelerations needed. On the other hand, there are big advantages of a simulation on the 
basis of subsystems:  

• Subsystems can be modelled, tested and compiled. Then they can be used in a way 
similar to software components that encapsulate their internal structure and can be 
connected via interfaces. 

• Critical effects like coulomb friction, backslash etc. can be encapsulated inside a 
subsystem. 

• Subsystems are ideal candidates for the partitioning of large systems on multiple 
processors. 

This paper describes an object-oriented method for the distributed simulation of 
multibodies with variable number of degrees of freedom. Unlike of a huge number of other 
methods, the described method keeps the block-module concept during simulation. The 
simulation of a mechanical subsystem has O(log(n)) time complexity on O(n) processors, that 
is comparable with the fastest available parallel algorithms [3, 4].  

The method was implemented in the simulation software [5] that can be used for the 
simulation mechanical parts of mechatronic systems.  

Also is developed an integration of the software with Autodesk Inventor. Design 
engineers can specify geometric and material data of simulation models inside Inventor and 
then translate it into the simulation tool. This approach minimise the model’s development 
cost and training of the design engineers. 

 

2 DESCRIPTION OF METHOD 
The base idea of the method is to perform the simulation of mechanical systems using the 

hierarchy of submodels that builds up the complete system. The submodels of the first level in 
general consist of connected bodies. The submodels of next levels (called children) consist, 
without loss of generality, of connected submodels (called parents). Since the main number of 
calculations proceeds inside of submodels, it follows that the simulation can be distributed 
easily on several processors. During the simulation on each time step the following tasks, 
shown in Fig. 1, have to be performed: 

1. Distributed calculation of absolute accelerations . )( ntV&

2. Calculation of the absolute coordinates and velocities on the next time step. Using 
a favourite ODE integration scheme (e.g. Runge-Kutta or some multistep method), 
the value of absolute coordinates )(~

1+ntX  and velocities )(~
1+ntV on the new time 

step can be obtained. 
3. Distributed stabilization of coordinates  and velocities .  )( 1+ntX )( 1+ntV
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Figure 1. Simulation steps 

3 DISTRIBUTED CALCULATION OF ACCELERATION 

The Newton-Euler equation of motion describing the dynamics of constrained multibody 
system can be written in the form: 

  (1) 
0g(X)

λXGVf(X,VM(X)
VX

=
−=

=

)() T&

&

where 
X is the vector of absolute coordinates of bodies  
V is the vector of absolute velocities 
M(X) is the mass matrix  
f(X,V) is the vector of external forces (other than constrain forces) 
g(X) is the vector of (holonomic) constraints 

X
gXG

∂
∂

=)(  is the constraint Jacobian matrix 

λ is the vector of Lagrange multipliers. 
 
Trying to find acceleration from (1) in a non-distributed way, the inverse of the matrix 

will be needed that is a numerical-expensive procedure, proportional to the cube of 
the number of simulating bodies. That is why the distributed calculation of acceleration 
shown in Fig. 2 is preferred. For big good-partitioned models this method costs O(n) 
numerical operations, where n denotes the total number of bodies in the simulation model. 

TGGM 1−
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Figure 2. Calculation of acceleration steps 

3.1 Hierarchical generations of equations of motion  
Each subsystem gets from its parents their dependency matrices D(i) and R(i): 

)()()()( RQDv iiii
e +=&  

where  
)(i

ev& is the vector of accelerations of the i-th parent’s bordering bodies 
)(Q i is the vector of forces acting in the i-th parent’s external links. 

 
For example, in Fig. 2 the subsystem S1 gets matrices D(1,1), R(1,1), D(2,1), R(2,1) from its 

parents S1,1, S1,2 etc. Here a body is called bordering to a subsystem, if it has constraints in the 
subsystem and is connected with external joints. A body is called internal to a subsystem, if it 
has constraints in the subsystem and is not connected to any external joint.  

The subsystem generates matrices D  and R  using the equation of constraints connecting 
the parents. Here  and D R are the dependency matrices:  

RDQve +=&  

 
where  
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ev& is the vector of accelerations of subsystem’s bordering bodies 
Q is the vector of forces in subsystem’s external links. 
 

Then the subsystem transmits  and D R to its child.  

3.2 Calculation of absolute accelerations on the top of hierarchy 
The subsystem of the highest level calculates Q(i) for each parent i and transmits it to the 

parent (e.g. in Fig. 2 the subsystem S transmits Q(1), Q(2) to its parents S1, S2 correspondingly). 

3.3 Backward hierarchical calculation of absolute accelerations 
Subsequently, each subsystem gets the current value of Q from its child (e.g. in Fig. 2 the 

subsystem S1,2 gets Q(2) from its child S1). Using Q the subsystem calculates . Then for each 
parent i the subsystem calculates Q

ev&
(i) and transmits it to the parent. Finally the absolute 

accelerations of all bodies are obtained. 

4 ALGORITHM OF DISTRIBUTED POST-STABILIZATION 

Using Runge-Kutta method of the fourth order, the value of )(~),(~
11 ++ nn tt VX  can be 

obtained on the new time step. To avoid drift errors, it is necessary to minimize the drift 
of the constraints on the new time step. This can be achieved by the post-stabilization of 
coordinates, based on Chin method [6]:  

   (2) )ˆ(ˆ
1n1n1n XZXX +++ −=

Here Z is the displacement stabilizing constraints in the simulation system: 

  (3) gGZ +=

where 
  is the vector of constraints )ˆ

1nXg(g +=

 
X
gXGG 1n ˆ)ˆ(

∂
∂

== + is the constraint’s Jacobian matrix 

 is the Moore-Penrose inverse of matrix G . +G
 
Obviously, the explicit calculation of a pseudo-inverse is a numerical very expensive 

procedure. Furthermore directly building up the matrix G and its inversion is a global process 
that conflicts with the idea of distributed simulation. One way to overcome this is to distribute 
the post-stabilization of constraints. In the method proposed here, the distributed and 
undistributed stabilization calculates the same vector Z, but the distributed way is more 
effective. For big good-partitioned models the distributed stabilization costs O(n) operations, 
where n denote the total number of bodies in the simulating model. That is much less than the 
complexity of non-distributed stabilization of absolute coordinates, which needs O(n3). 

It should be also noted that for good-partitioned models the distributed stabilization has 
O(log(n)) time complexity on O(n) processors, that gives the total O(log(n)) time complexity 
of the simulation method.  

Now the details of this procedure will be given more precisely.  
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4.1 Definitions  
Consider an arbitrary body from the simulation model of a mechanical system. Let J 

denote the array of joints that are connected to the body. Let joints from J be included in 
subsystems S1, S2, … , Sm, that are situated on different hierarchy levels. Let x=(x1  x …x7) 
denote the 7-length vector of body’s coordinates, where x1, x2, x3 are coordinates of the 
body’s centre of mass and x4, x5, x6, x7 are Euler parameters of the body. Let g0 denote the 
drift of normalization condition: 

176540 −+++= xxxxg  

Then the stabilization of x can be written down as: 

)...(~~ )()2()1()0( mzzzzxzxx 1n1n ++++−=−= ++  

where  
 z(0) is the displacement stabilizing normalization condition. 
 z(i) is the displacement stabilizing constraints in subsystem Si (i>0). 
 
The vector z(0) is called internal body’s displacement and z~  (m)(2)(1) z...zz +++=

external body’s displacement. The distributed calculation of stabilization displacements Z(i) is 
shown in Fig. 3: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Stabilization steps 
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4.2 Generations of equations of bodies’ normalized conditions  
A body calculates dependency matrices S and B: 

BzSz(0) += ~  

where  
z(0) is internal body’s displacement  
z~ is external body’s displacement. 

 
Then the body transmits S and B to its submodel of the first level of hierarchy (e.g. in Fig. 3 
body 1 transmits S(1,1), B(1,1) matrices to its parent – the subsystem S1). 

4.3 Forward hierarchical generations of stabilization’s equations  
Consider a stabilization of constraints in an arbitrary subsystem. Let the subsystem include 

joints, stabilizing k bodies: body1, body2, … , bodyk. It is necessary to calculate the 
dependency of vector , stabilizing constraints in the subsystem, from 
the vector of external displacements

( TT
k

TT zzzZ ...21= )
Z~ , stabilizing constraints in subsystems of higher levels. 

The subsystem gets from its parents their dependency matrices S(t) and B(t): 
)()()()( BZSZ tttt

i += ~  

where  
)(Z t

i is the vector of displacement stabilizing constraints in t-th parent. 
)(Z t~ is the vector of external displacements acting on bodies bordering to t-th parent. 

 
Then the subsystem generates dependency matrices S and B using the equation of 

constraints:  

BZSZ += ~  

where  
Z is the vector of displacement stabilizing subsystem’s constraints  
Z~ is the vector of external displacements acting on bodies bordering to the subsystem. 

 
Then the subsystem transmits S and B to its child (e.g. in Fig. 3 the subsystem S1 transmits 

S(1), B(1) matrices to its parent – the subsystem S).  

4.4 Backward hierarchical calculation of displacements and the stabilization of 
constraints  

A subsystem gets the current value of Z~  from its child. Using Z~  the subsystem calculates 
. Then the subsystem changes the coordinates of subsystem’s bodies: ( TT

k
TT zzzZ ...21= )

kii BodyBody zxx −= .:.  
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Then for each t=1 ... k the subsystem calculates  and transmits it to the t-th parent. )(Z t~
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4.5 Stabilization of bodies’ normalization conditions 
A body gets the current value of  from its subsystem of first level of hierarchy. Using  

the body calculates  and changes coordinates: 
z~ z~

)0(z
)0(.:. zxx −= BodyBody  

4.6 Distributed stabilization of constraints on velocity level 
Because of the discretization of the model there is a need to stabilize also the constraints 

on the velocity level: 
GV== g&0  

The stabilization of velocities is performed in similar way, except the stabilization of 
internal bodies’ constraint and is omitted in this paper.  

5 EQUATIONS OF DISTRIBUTED POST-STABILIZATION 
After the description of the processing flow, in the following a detailed mathema-

tical basement of the algorithm of the distributed post-stabilization will be given. 

5.1 Equations of bodies’ stabilization 
The stabilization vector of the complete system can be calculated using the formula 

gGGGZ TT 1)( −=  

where   
)ˆ

1nXg(g +=  is the global vector of simulation system’s constraints 

 
X
gXGG 1n ˆ)ˆ(

∂
∂

== +  is the constraint Jacobian matrix. 

 
Let M denote the vector: 

g)(GGΜ 1T −=  (4)

Then Z is equal to: 

MGZ T=  (5)

Equation (4) can be rewritten as: 

)M(GGg T=  (6)
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To simplify the proof it is helpful to reorder the vector g and the rows of the 
correspondent matrix G. From the object-oriented point of view, bodies can be considered as 
subsystems of zero level of hierarchy. Then normalized conditions of bodies can be rewritten 
as constraints of subsystems of zero level. Let the simulated system consist of N0 bodies, N1 
submodels of the first level, N2 derived submodels of the second level etc. Let C be the 
sequence of subsystems C = { , ,..., ,…, ,..., }, where  denotes the t-th 
subsystem of k-th level and L denotes the number of levels of submodels. The vector of 

constraints g is reordered corresponding to C: 

)0(
1S )0(

2S )0(
1NS )(

1
LS )(L

NL
S )(k

tS

( )TTL
N

TL
NN L

gg )()()0()0(
1 ......

11
ggg = , where 

 denotes the vector of constraints of t-th subsystem of k-th level. )(k
tg
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Let all bodies be connected with joints. Then matrices G, g can be rewritten as: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0

00 ~...~~
...00

............
0...0
0...0

~

...

21

2

1

)0(

)0(
2

)0(
1

N

NNg

g
g

GGG
G

G
G

G

g

g  

where  

t

t
t x∂

∂
=

)0(gG  is the Jacobian matrix of t-th body. 

  is the vector of constraints of higher levels of hierarchy. ( TTL
N

T

L
... )()1(

1
~ ggg = )

 
Matrix M can be divided in an analogue way into subvectors: 

( )TT
NMM MM ~...

01=  

From equation (5) it can be obtained:  

⎟⎟
⎟
⎟

⎠

⎞
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⎜
⎜

⎝

⎛

+

+
=
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⎠

⎞
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⎛

+

+
=
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11

zz

zz

MGG

MGG
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~
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NN
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The meaning of  is the displacement of body t stabilizing its normalized T
ttt M Gz =

conditions, i.e. internal body’s displacement. The meaning of  is the displacement MGz ~~~ T
tt =

of body t stabilizing constraints of higher levels, i.e. external body’s displacement.  
Then (6) can be rewritten as: 
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NNN
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NN
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MM
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g
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 (7)

where ( )
0

~...~~~
21 NGGGG =   is the Jacobian matrix of constraints of higher levels.  

Using definitions of  andtz tz~ , the new system of equations is obtained: 

ZGzGzGg

zGzG
~~~...~~
...1~

0011

0
)0(

+++=

=+=

NN

ttttt Ntg
 (8)

where  is the displacement of all bodies stabilizing constraints of higher ( TTT
0N1 z...zZ ~~= )

levels. 
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Therefore, for each t the dependency of the t-th body’s internal displacement  on the tz
external body’s displacement tz~ can be expressed as: 
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ttt BzSz t += ~  (9)

where 

+

+

=

−=

tt

tt

g GB

GGS
)0(

 

Here  is the Moore-Penrose inverse of matrix . +
tG tG

The new equation can be obtained as the result of substitution (9) in the lower part of (8): 

⎟
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B
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GZG
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z
Gg

0N

1

MM  

That can be rewritten as:  

BGZDGg ~~~~~~ +=  (10)

where D~  is a symmetric block-diagonal matrix. 

5.2 Equations of a subsystem stabilization  

Consider a subsystem . Let  denote the vector of constraints in the subsystem. Then )1(
1S ig

vector  can be rewritten as  g~

( )TTT
i ggg ˆ~ =  

Let Xe denote the vector of coordinates of subsystem’s bordering bodies, Xi denote the 
vector of coordinates of subsystem’s internal bodies. Let  denote the vector of coordinates UX̂
of bodies that do not have constraints in the subsystem.  

Reordering coordinates allows rewriting (10) in the form: 
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ˆˆ0
0
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 (11)

where  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

==
e

i

i

i
ieiii X

g
X
g

GGG  is the Jacobian matrix 

 is the vector of displacement stabilizing subsystem’s constraints ( TT
e

T
iA ZZZ = )

 Z~  is the vector of displacement of bordering bodies stabilizing external constraints  
  is the vector of displacement of external bodies stabilizing external constraints. UẐ

The goal is to express  as the function of . Then  can be substituted in the lower AZ UẐ AZ
part of (11) and the equation that has the same form as (10), can be obtained, but with less 
number of displacements.  
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The matrix equation (11) can be transformed to the system of equations: 

UUUUU

i
T

iii

BGBGZDGZDGZDGg

BGZDGZDGg
ˆ~ˆˆˆˆ~ˆˆˆ

~

++++=

++=

eeeeeeeAeee
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DDD
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D

=

=

⎟⎟
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⎝

⎛
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Finally, the desired dependency is obtained from the first equation of (12): 

BZSZ += ~
A  (13)

where 

)BG(g)D(GB

DG)D(GS

iiii

T
iii

A

e

−−=

−=
+

+

 (14)

Substitution  in second equation of AZ (12) leads to the equation:  

UUUUU BGZDGBBDGZDSDGg ˆˆˆˆˆ)(ˆ~)(ˆˆ +++++= xeeeeeeee  

Therefore, 

BGZDGg ˆ~ˆˆˆˆ +=  

where 
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So, an equation of the same form as  (10) can be obtained, but now it does not include 
subsystem’s constraints and subsystem’s internal bodies. Obviously, the same procedure can 
be consequently implemented for all subsystems in C. From (14) follows that matrices S and 
Β can be calculated using only the information about subsystem’s constraints (gi, Gi matrices) 
and information about sybsystem’s parents (  matrices and some additional matrices, )()( BS tt ,
that are needed for the calculation of BBA, Di, De). 
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5.3 Equations of stabilization on the highest level of hierarchy  
Consequently repeating the procedure described in the previous chapter, gives the 

equations of displacements in the subsystem of the highest level of hierarchy: 

BGZDGg ˆ~ˆˆˆˆ +=  

where  
ĝ  is the vector of subsystem’s constraints 

X
gG

∂
∂

=
ˆˆ  is the Jacobian matrix. 

X is the vector of subsystem’s bodies  
Ẑ  is the vector of displacement stabilizing subsystem’s constraints 
 
Therefore, the value of Z  is obtained: ˆ

)ˆ~ˆ()ˆˆ(ˆ BGgDGZ −= +  

By k denote the number of subsystem’s parents. Let  be the vector of external )(Z t~

displacements acting on bodies bordering to the t-th parent (t=1…k). Obviously,  is a )(Z t~

corresponding subvector of Z . The subsystem calculates  and transmits it to the t-th ˆ )(Z t~

parent.  
Now (13) can be used for the backward hierarchical calculation of displacements. A 
subsystem gets Z~  from its child and calculates . Then for each parent the subsystem 
generates the correspondent subvector of  and transmits it to the parent. At the end of the 
process, the global vector of displacement Z is generated. 

AZ

AZ
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6 EXAMPLE OF SIMULATION 
It was performed a simulation of the 6-bodies pendulum shown in Fig. 4.  This example 

illustrates all advantages of the method: the object-oriented simulation of multibodies, the 
stabilization of a closed-loop system and the numerical efficiency of the distributed 
simulation. 

The pendulum was modelled in Autodesk Inventor and converted to a simulation model. 
The simulation time interval was choosen to be [0s, 20s]. The simulation was performed with 
Runge-Kutta method of the fourth order with the fixed time step equal to 0.005s.  

The pendulum consists of two identical subsystems (marked by light grey and by dark 
grey) connected with each other and with the ground (marked by black) by revolute joints. 
Each subsystem consists of three bodies connected by revolute joints. Obviously, subsystems 
are stiff and the complete system has only two degrees of freedom. 
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Figure 4. 6-Bodies pendulum 

Fig. 5 shows the deviation of degrees of freedom from start values. 
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Figure 5. Oscillation of the pendulum 

 
In Fig. 6 the drift of the distributed stabilization is presented. Experimental data show that 

the algorithm is stable and the drift of the model is about the accuracy of model’s definition.  
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Figure 6: Drift of the model 

 
While the distributed stabilization four 18x18 matrices and two 12x12 matrices have to be 

inverted, which needs about 5·106 arithmetic operations. That is much more numerical 
efficient than the undistributed stabilization of absolute coordinates (then the pseudo-inverse 
of a 54x42 matrix and a 54x36 matrix has to be calculated, which needs about 3·107 
arithmetic operations).  

7 CONCLUSION 
This paper presents a new recursive object-oriented algorithm for calculating the forward 

dynamics of general rigid-body system using a subsystem approach that is well suited for 
distributed processing. It is an exact, non-iterative algorithm, and is applicable to mechanisms 
with any joint type and any topology, including branches and kinematic loops. The simulation 
of a mechanical subsystem has O(log(n)) time complexity on O(n) processors, that is 
comparable with the fastest available parallel algorithms.  

It was performed the implementation of the method and developed an object-oriented tool 
for simulation of multibody systems. Also is developed an integration of the software with 
Autodesk Inventor. Design engineers can specify geometric and material data of simulation 
model inside Inventor and then translate it into the simulation tool. This approach minimise 
the model’s development cost and training of the design engineers. 

Experimental data show the stability of the method. The drift of closed-loop structures is 
limited for a long period of time. Thus, the experimental proof that the tool can be 
implemented for the simulation of large constrained multibody systems is obtained. 
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