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Abstract. This paper presents a tool for the development of virtual reality of mechanical parts of mechatronic 
systems.  The most important aspects of engineering of mechanical systems are implemented in code: designing 
and documenting 3D parts and assemblies, numerically efficient simulation and stabilization of designed 
models. Despite other tools, that one keeps the object-oriented approach during the design and the simulation of 
models.   

 
1 Introduction 

The object-oriented approach significantly reduces the cost and development time of software, increasing 
reusability and abstraction [1]. But this type of modularization in most cases is given up during simulation, 
especially for mechanical systems, because common modelling formulations use access to the complete system 
e.g. to calculate all accelerations needed. On the other hand, there are big advantages of a simulation on the basis 
of subsystems:   

• Subsystems can be modelled, tested and compiled. Then they can be used in a way similar to 
software components that encapsulate their internal structure and can be connected via interfaces.  

• The commercial classified information of submodels is protected. A submodel works like a "black 
box" that has to provide only the strictly determined set of information via its interfaces. The 
submodel's internal data: parameters of constraints, forces, masses of internal bodies, etc. are 
unknown to the users of submodels.  

• Critical effects like coulomb friction, backslash etc. can be encapsulated inside a subsystem. 
• The tool can be easily integrated into more general tools for the development of virtual reality of 

mechatronic systems. Mechanical objects like bodies, springs, torques, etc. can be used as parents of 
mechatronic objects. 

This paper presents a tool for the development of virtual reality of mechanical parts of mechatronic systems. The 
tool is based on the fast object-oriented method, whose time complexity is comparable with the fastest available 
parallel algorithms.  
It was developed an integration of the software with Autodesk Inventor. Design engineers can specify geometric 
and material data of simulation models inside Inventor and then translate it into the simulation tool. This 
approach minimizes the model's development cost and instruction of end-users. 

2 Description of Method 

The base idea of the method, shown in Fig. 1, is to perform the simulation of mechanical systems using the 
hierarchy of submodels that builds up the complete system.  
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Figure 1: Simulation steps 



Submodels of the first level in general consist of connected bodies. Submodels of next levels (called children) 
consist, without loss of generality, of connected submodels (called parents). Since the main number of 
calculations proceeds inside of submodels, it follows that the simulation can be distributed easily on several 
processors. During the simulation on each time step the following tasks, have to be performed: 

1. Distributed calculation of absolute accelerations . )( ntV&
2. Calculation of the absolute coordinates and velocities on the next time step. Using a favourite ODE 

integration scheme (e.g. Runge-Kutta or some multistep method), the value of absolute coordinates 
)(~

1+ntX  and velocities )(~
1+ntV on the new time step can be obtained. 

3. Distributed stabilization of coordinates  and velocities .  )( 1+ntX )( 1+ntV

3 Distributed calculation of acceleration 

The Newton-Euler equation of motion describing the dynamics of constrained multibody system can be written 
in the form: 
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where 

X is the vector of absolute coordinates of bodies  
V is the vector of absolute velocities 
M(X) is the mass matrix  
f(X,V) is the vector of external forces (other than constrain forces) 
g(X) is the vector of (holonomic) constraints 
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=)(  is the constraint Jacobian matrix 

λ is the vector of Lagrange multipliers. 
Trying to find acceleration from (1) in a non-distributed way, the inverse of the matrix GM  will be 
needed, which is a numerically expensive procedure, proportional to the cube of the number of simulating 
bodies. That is why the distributed calculation of acceleration shown in Fig. 2 is preferred. For big good-
partitioned models this method costs O(n) numerical operations, where n denotes the total number of bodies in 
the simulation model [2]. 
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Figure 2: Calculation of acceleration steps 



3.1 Hierarchical generations of equations of motion  

Each subsystem gets from its parents their dependency matrices D(i) and R(i): 
)()()()( RQDv iiii

e +=&  

where  
)(i

ev& is the vector of accelerations of the i-th parent’s bordering bodies 
)(Q i is the vector of forces acting in the i-th parent’s external links. 

For example, in Fig. 2 the subsystem S1 gets matrices D(1,1), R(1,1), D(2,1), R(2,1) from its parents S1,1, S1,2 etc. Here 
a body is called bordering to a subsystem, if it has constraints in the subsystem and is connected with external 
joints. A body is called internal to a subsystem, if it has constraints in the subsystem and is not connected to any 
external joint.  
The subsystem generates matrices  and D R  using the equation of constraints connecting the parents. Here  
and 

D
R are the dependency matrices:  

RDQve +=&  

where  

ev& is the vector of accelerations of subsystem’s bordering bodies 

Q is the vector of forces in subsystem’s external links. 
Then the subsystem transmits D  and R to its child.  

3.2 Calculation of absolute accelerations on the top of hierarchy 

The subsystem of the highest level calculates Q(i) for each parent i and transmits it to the parent (e.g. in Fig. 2 the 
subsystem S transmits Q(1), Q(2) to its parents S1, S2 correspondingly). 

3.3 Backward hierarchical calculation of absolute accelerations 

Subsequently, each subsystem gets the current value of Q from its child (e.g. in Fig. 2 the subsystem S1,2 gets 
Q(2) from its child S1). Using Q the subsystem calculates . Then for each parent i the subsystem calculates Qev& (i) 
and transmits it to the parent. Finally the absolute accelerations of all bodies are obtained. 

4 Algorithm of distributed post-stabilization 

Using Runge-Kutta method of the fourth order, the value of  can be obtained on the new time 
step. To avoid drift errors, it is necessary to minimize the drift of the constraints on the new time step. This can 
be achieved by the post-stabilization of coordinates, based on Chin method [4]:  
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Here Z is the displacement stabilizing constraints in the simulation system: 
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 is the Moore-Penrose inverse of matrix G . +G
Obviously, the explicit calculation of a pseudo-inverse is a numerical very expensive procedure. Furthermore 
directly building up the matrix G and its inversion is a global process that conflicts with the idea of distributed 
simulation. One way to overcome this is to distribute the post-stabilization of constraints. It was developed the 
method [3], shown in Fig. 3, where is performed the distributed calculation of the vector Z, that is much more 
effective than the undistributed calculation.  
Because of the discretization of the model there is a need also to stabilize the constraints on the velocity level: 

. The distribution of velocities’ stabilization is performed in a similar way. GVg == &0



For big good-partitioned models the distributed stabilization costs O(n) operations, where n denotes the total 
number of bodies in the simulating model. That is much less than the complexity of non-distributed stabilization 
of absolute coordinates, which needs O(n3). It should be also noted that for good-partitioned models the 
distributed stabilization has O(log(n)) time complexity on O(n) processors, that gives the total O(log(n)) time 
complexity of the simulation method.  
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Figure 3: Stabilization steps 

4.1 Forward hierarchical generations of stabilization’s equations 

Each subsystem gets from its parents their dependency matrices S(t) and B(t): 

)()()()( BZSZ tttt
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where  
)(Z t

i is the vector of displacement stabilizing constraints in the t-th parent. 
)(Z t~
is the vector of external displacements acting on bodies bordering to the t-th parent. 

Then the subsystem generates dependency matrices S and B using the equation of constraints:  

BZSZ += ~
i  

where  

iZ is the vector of displacement stabilizing subsystem’s constraints  

Z~ is the vector of external displacements acting on bodies bordering to the subsystem. 
Then the subsystem transmits S and B to its child (e.g. in Fig. 3 the subsystem S1 transmits S(1), B(1) matrices to 
its parent – the subsystem S).  

4.2 Calculation of stabilization’s displacement on the top of hierarchy 

The subsystem of the highest level calculates for each parent t and transmits it to the parent (e.g. in Fig. 2 the 
subsystem S transmits Q

Z~
(1), Q(2) to its parents S1, S2 correspondingly). 



4.3 Backward hierarchical calculation of displacements and the stabilization of constraints  

A subsystem gets the current value of  from its child. Using Z  the subsystem calculates the vector of 

displacement stabilizing subsystem’s constraints 

Z~ ~

( )TT
k

TT
i zzzZ . Then the subsystem changes the 

coordinates of subsystem’s bodies: 
...21=

kii BodyBody zxx −= .:.  

Then for each t=1 ... k the subsystem calculates )(Z t~
 and transmits it to the t-th parent. Finally all constraints are 

stabilized. 

5 Implementation 

It was developed an object-oriented software based on the algorithm. In the tool a simulating mechanical system 
is split into functional parts representing real components. The wide set of objects, describing different types of 
constraints and forces, was developed: revolute joint, ball joint, stiff connection, gravity force, torque, springs 
etc.  
Using Autodesk Inventor API, it was performed an integration of the software with Autodesk Inventor. Design 
engineers can specify geometric and material data of simulation models inside Inventor and then translate it into 
the simulation tool. This approach minimize the model's development cost and instruction of end-users.  

6 Example of simulation 

It was performed a simulation of the car model shown in Fig. 4.  This example illustrates all advantages of the 
method: the object-oriented simulation of multibodies, the stabilization of a closed-loop system and the 
numerical efficiency of the distributed simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Car model 

The complete model consists of 17 bodies coupled in several subsystems: four dampers, four suspensions, four 
wheel with ground subsystems.  The bodies are connected by 20 joints. The hierarchy of submodels has three 
levels. The subsystems of the first level are dampers and wheel with ground. The subsystems of the second level 
are suspensions. The subsystem of the highest level is the complete car.  
The car’s tyres are simulated by springs with dampers. The model is stable by design because additional springs 
are placed between wheels and ground acting in x and y direction.  
We performed the emulation of the passenger that gets into the car by the additional force F acting in z-direction, 
whose value depends on time t:  
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The car was modelled in Autodesk Inventor and converted to a simulation model. The simulation time interval 
was chosen to be [0s, 6s]. The simulation was performed with Runge-Kutta method of the fourth order with the 
fixed time step equal to 0.001s. Fig. 5 shows the changes of z-coordinate of the car body. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Z-coordinate of the car body 

Experimental data show that the algorithm is stable and the drift of the model has order 10-10, that is equal to the 
accuracy of Autodesk Inventor model’s definition.  
For the validation of our simulations results we have built up the same model in Simpack. The comparison 
shows that the dynamics of the models was calculated correctly. The absolute difference between z-accelerations 
of the car body in the software and in Simpack has order 10-4, absolute difference between z-coordinates has 
order 10-5. This is much more than the error of the Autodesk model’s definition because the values of wheels’ 
spring constants (close to 105 N/m) are large and the definition of the Simpack model was performed using 
generalized coordinates. 
Despite the partitioning of the system is not optimal, the distributed simulation of the model is about four times 
faster than the undistributed.  

7 Conclusion 

This paper presents a new tool for simulation of the forward dynamics of general rigid-body system using a 
subsystem approach that is well suited for distributed processing. It is based on an exact, non-iterative algorithm, 
and is applicable to mechanisms with any joint type and any topology, including branches and kinematic loops. 
The simulation of a mechanical subsystem has O(log(n)) time complexity on O(n) processors, that is comparable 
with the fastest available parallel algorithms.  
It was performed the implementation of the method and developed an object-oriented tool for simulation of 
multibody systems. Using Autodesk Inventor API, it was developed an integration of the software with 
Autodesk Inventor. This approach minimizes the model's development cost. 
Experimental data show the stability of the method. The drift of closed-loop structures is limited for a long 
period of time. The validation of simulations results was performed using Simpack software. The comparison 
shows that the dynamics of the models was calculated correctly. Thus, it is obtained the experimental proof that 
the tool can be implemented for the simulation of large constrained multibody systems.  
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