

TECHNISCHE MECHANIK, Band 16, Heft 1, (2006), 77-88
Manuskripteingang: 1. May 2006

Algorithm for Component Based Simulation of Multibody
Dynamics

D. Vlasenko, R. Kasper

This paper presents the complete description of a non-iterative algorithm for the distributed component based
simulation of the dynamics of multibodies. The simulation of well-partitioned systems has complexity O(N),
where N is the total number of bodies. The algorithm was implemented in the Virtual Systems Developer (VSD)
software. In contrast to other tools, this one maintains the object-oriented approach during the design and the
simulation of models. Moreover an interface between VSD and a CAD tool like Autodesk Inventor was
developed, where a 3D-car system was modelled. The simulation results of the car dynamics were verified in
Simpack software.

1 Introduction

Simulation of multibodies has grown rapidly in recent years since engineers need to analyze increasingly
complex mechanical systems. The dynamic simulation of constrained multibody systems is essential in robotics,
biomechanics, vehicle and machinery design etc. The development and tests of computer models instead of real
prototypes has the following significant advantages: decreased development cost, decreased development time,
and increased quality of the product.

A multibody system consists of a finite number of rigid or flexible bodies which are connected by coupling
elements like joints, springs, dampers and actuators. The coupling elements are assumed to be massless, so that
the mass of the mechanical system is concentrated in the bodies. There is a large quantity of software by which
the dynamics of multibodies can be simulated: ADAMS, SIMPACK, MEDYNA etc.

Trying to improve their usability and flexibility, modern simulation tools use the object-oriented method. In this
approach a multibody system is represented as a hierarchy of submodels, connected by joints, springs and
dampers. This approach significantly reduces the cost and development time of software, increasing reusability
and abstraction, as was shown by Cellier (1996).

However, nowadays the object-oriented approach is used only on the design level. After a design engineer has
developed a model, the simulation software generates equations of motion, describing the dynamics of the
complete system. The problem is that in these equations all information about modularization is lost since the
hierarchy of submodels is destroyed and the system is considered as a set of bodies connected by joints, springs
and dampers. The simulation, based on these equations, is performed in a non-modular way.

In the last years we have developed and implemented the method, performing the object-oriented simulation of
mechanical systems with holonomic constraints. The most detailed description of the method was written by
Vlasenko (2006). In our method the model’s partition, defined during the model’s design, remains unchanged
during the simulation, i.e. we use the simulation based on the hierarchy of subsystems.

The main advantages of the simulation on the basis of subsystems are:

• The subsystems can be modelled, tested and compiled independently. Then they can be used in a way
similar to software components that encapsulate their internal structure and can be connected via
interfaces. This significantly decreases the time and cost of the models’ development and test. Redesign
and reuse of components is more effective and easier.

• The commercially classified information of submodels is protected. A submodel works like a "black

box" that has to provide only the strictly determined set of information via its interfaces. The

submodel's internal data: parameters of constraints, forces, masses of internal bodies, etc. are unknown
to the users of submodels. Therefore, in the future producers of mechanical (or, more commonly,
mechatronic) components (e.g. motors, piezo-actuators) can provide the virtual submodels to a design
office. And the design office can test and choose suitable components, using only the numerical
simulation, without buying and developing real mechanical systems and components.

• Critical effects like Coulomb friction, backslash etc. can be encapsulated inside a subsystem.

• The simulation of big well-partitioned models costs O(N) numerical operations, where N denotes the

total number of bodies in the simulation model.

• Subsystems are ideal candidates for the partitioning of systems on multiple processors.

In this paper we improve the previous version of the algorithm, described by Kasper, Vlasenko (2004). This
time we do not use generalized coordinates and perform the simulation using only absolute coordinates. The
advantages of this approach are:

• The stabilization of absolute coordinates and velocities can be distributed in a manner similar to the
calculation of absolute coordinates. Therefore, the simulation process is completely distributed.

• The development of models is much easier and faster. During the modelling it is not necessary to

partition the coordinates into dependent and independent ones, to define loop-closing constraints in a
special manner, to set the order of bodies, choosing for each joint a basic and a dependent body.
Models can be defined in standard CAD-tools and translated in the simulation software without any
redesign. This approach minimizes development cost of the models, and the reusability of submodels.

We implemented the method and created an object-oriented software Virtual Systems Developer (VSD)
simulating the dynamics of multibodies. The wide set of objects, describing different types of constraints and
forces, was implemented in VSD: revolute joint, ball joint, stiff connection, gravity force, torque, springs etc.
Trying to minimize the development time of models, also an interface between VSD and a CAD-like tool
Autodesk Inventor was developed, by which mechanical systems can be modelled.

In this paper we show the simulation of a simplified car model in VSD. The comparison of our results with
results obtained using the Simpack software, shows that VSD calculates the dynamics of multibodies correctly
and accurately.

2 Description of Method

The basic idea of the method, shown in Figure 1, is to perform the simulation of mechanical systems using the
hierarchy of submodels that constitute the complete system.

 Figure 1: Simulation steps

)(),(kk tt vq

)(ktv&

)(~),(~
11 ++ kk tt vq

Calculation of
accelerations

Integration

Stabilization

)(),(11 ++ kk tt vq

Submodels of the first level in generally consist of connected bodies. Submodels of the next levels (called
children) consist, without loss of generality, of connected submodels (called parents). Since the overwhelming
majority of calculations proceeds inside of the submodels, it follows that the simulation can be distributed easily
on several processors. During the simulation on each time step the following tasks have to be performed:

1. Distributed calculation of the absolute accelerations)(ktv& .

2. Calculation of the absolute coordinates and velocities on the next time step. Using a favorite ODE
integration scheme (e.g. Runge-Kutta or some multistep method), the value of the absolute coordinates

)(~
1+ktq and velocities)(~

1+ktv on the new time step can be obtained.

3. Distributed stabilization of coordinates q(tBk+1B) and velocities v(tBk+1B).

3 Main Idea of the Distributed Calculation of Acceleration

The calculation of acceleration consists of three steps, shown in Figure 2. As it was shown by Vlasenko (2006),
for large well-partitioned models this method costs O(N) numerical operations, where N denotes the total
number of bodies in the simulation model.

 Figure 2: Calculation of acceleration steps

3.1 Hierarchical Generations of Equations of Motion

Each subsystem gets from its parents matrix D P

(i)
P and vector rP

(i)
P which describe the linear dependency of)(i

ev& on
)(τ i :

)()()()(
e rτDv iiii +=& (1)

where

)(i

ev& is the vector of accelerations of the i-th parent’s bordering bodies,

D P

(1)
P rP

 (1)
P

D P

(1,1)
P rP

(1,1)
P
 D P

(1,2)
P rP

(1,2)
P
 D P

(2,1)
P rP

(2,1)
P
 D P

(2,2)
P rP

 (2,2)
P

)(),(kk tt vq

)(ktv&

D P

(2)
P rP

(2)
P

 S B1,1 S B1,2 S B2,1 S B2,2

S B1 S B2

S

S B1 S B2

 S B1,1 S B1,2 S B2,1 S B2,2

τ P

(2)
P

τ P

 (1)
P

τ P

 (1,1)
P τ P

 (1,2)
P τ P

(2,1)
P τ P

 (2,2)
P

)(τ i is the vector of forces acting in the i-th parent’s external links.

For example, in Figure 2 the subsystem S B1B gets D P

(1,1)
P, rP

(1,1)
P, D P

(2,1)
P, rP

(2,1)
P from its parents S B1,1 B, S B1,2B etc. Here a body

is called bordering a subsystem, if it has constraints in the subsystem and is connected with external joints. A
body is called internal to a subsystem, if it has constraints in the subsystem and is not connected to any external
joint.

The subsystem generates the matrix D and the vector r using the equation of constraints connecting the parents.
Here D and r describe the linear dependency of ev& on τ :

rDτve +=& (2)

where

 ev& is the vector of accelerations of subsystem’s bordering bodies,

 τ is the vector of forces in subsystem’s external links.

Then the subsystem transmits D and r to its child.

3.2 Calculation of Forces on the Top of the Hierarchy

The subsystem of the highest level S calculates the vector of forces t acting in the constraints connecting its
parents. Let)(τ i denote the vector of forces acting in external links of S BiB, where S BiB is the TiT-th parent of S. It is
clear that)(τ i is a part of the vector t. In our algorithm S calculates)(τ i and transmits it to S BiB (e.g. in Figure 2
the subsystem S transmits)(τ 1 ,)(τ 2

P

Pto its parents S B1B, S B2B correspondingly).

3.3 Backward Hierarchical Calculation of the Absolute Accelerations

Subsequently, each subsystem gets the current value of τ from its child (e.g. in Figure 2 the subsystem S B1,2B gets
τ P

(2)
P from its child S B1B). Then for each parent S BiB the subsystem calculates τ P

(i)
P and transmits it to the parent.

Subsystems of the lowest level of the hierarchy calculate the absolute accelerations of its bodies.

Finally, the absolute accelerations of all simulating bodies are obtained.

4 Equations of the Distributed Calculation of the Acceleration

4.1 Newton-Euler Equations of Motion

Equations of motion describing the dynamics of constrained multibody system, consisting of Tn T bodies, in
absolute coordinates can be written

nkk

T

...11
0)(

),(
)(

0)(
)(

)(

==

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

θ
qg

vqu
qf

λ
v

qG
qGM

vqTq
&

&

3)

(4)

(5)

(6)

where

()TT
n

T
n

TT θxθxq K11= is the vector of position variables, consisting of Cartesian position
variables kx and Euler parameters of body centroidal reference frames kθ ,

()TT
n

T
n

TT ΩxΩxv &K& 11= is the vector of velocity variables, consisting of absolute velocities kx&
and global angular velocities kΩ ,

)(qT is the block diagonal matrix describing the relation between the coordinates and velocities,

f is the vector of external forces (other than constraint forces),

Tg T is the vector of (holonomic) constraints,

TM T is the mass matrix,

λ is the vector of Lagrange multipliers,

T
q
gG ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= is the matrix proportional to the constraint Jacobian,

vGu ⋅−= & ,

1=kθ is the normalization condition on the Euler parameters of the bodies.

Readers interested in details of this formulation of the Newton-Euler equations of motion are referred to Chin
(1995) and Shabana (2001) e.g..

In the future we call TG T the transformed Jacobian. Let us show how we can transform these equations, describing
the dynamics of global multibody system, to the systems of equations, describing the dynamics of subsystems.

4.2 Equations of Motion of a Basic Subsystem

Consider a basic subsystem S (i.e. the subsystem of the lowest level of the hierarchy), shown in Figure 3,
included in a complete simulating system. By Tn T we denote the number of bodies in S. Let Tg T denote the TcT-vector
of equations of internal constraints:

() ()TT
cgg 00)()(1 KK == SS qqg (7)

where Tq BSTB is the 7n-vector of the absolute coordinates of the subsystem’s bodies.

 Figure 3: A subsystem of several connected bodies

Let τ be the vector of Lagrange forces acting in external constraints. Suppose that first m bodies are connected
with the complete system by external joints, i.e. first m bodies are bordering. Let Tq TBe B denote the 7m-vector of
absolute coordinates of bordering bodies. Let Tq TBiB denote the 7(n-m)-vector of absolute coordinates of internal
bodies. Obviously, Tq BSTB can be written as:

1
eq

2
eq

1
iq

1τ

2
iq 2τ

()TTT
ieS qqq = (8)

We partition the transformed Jacobian T
q
gG
S
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= into parts

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

==
i

i

T
q
gT

q
gGGG e

e
ie (9)

Then a part of X(4) X, corresponding to the subsystem S, is

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ +
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

u
f
τf

λ
v
v

0GG
GM0
G0M

i

e

i

e

ie

ii

ee

&

&
T

T

 (10)

where

),...,(1 mdiag MMMe = is the mass matrix of bordering bodies

),...,(1 nmdiag MMMi += is the mass matrix of internal bodies

 ()TT
m

T fffe L1= is the vector external forces acting on bordering bodies

 ()TT
n

T
m fffi L1+= is the vector external forces acting on internal bodies

 vGu ⋅−= &
This can be written as a system of equations

uvGvG

λGfMv

λGτfMv

iiee

iiii

eeee

=+

−=

−+=
−

−

&&

&

&

)(

)(
1

1

T

T

(11)

(12)

(13)

Substituting ev& , iv& from X(11) X and X(12) X in X(13) X, we obtain

uλGfMGλGτfMG iiiieeee =−+−+ −−)()(11 TT (14)

or, in the other form

uτMGfGMλGGM ee −+= −−− 111 TT (15)

We can find the dependency of λ on τ even when TGGM 1− is singular (i.e. when TG T has dependent rows):

)()(

)(
11

11

ufGMGGMb

MGGGMS

bSτλ

ee

−=

=

+=

−+−

−+−

T

TT
(16)

(17)

(18)

where +−)(1 TGGM is a pseudoinverse of TGGM 1− based on a singular value decomposition (SVD), shown by

Press et al. (2002).
Substituting λ in X(11) X, we obtain the relation between ev& and τ :

rDτve +=& (19)

where

bGMfMr

SGMMD

e
1

ee
1

e

e
1

e
1

e
T

T

−−

−−

−=

−=

(20)

(21)

Using the equations X(20) X - X(21) X, the subsystem calculates D and r and transmits them to its child.

4.3 Building Up the Hierarchy

Consider a derived subsystem S (i.e. a subsystem of the high level of the hierarchy) consisting of TL T parent
subsystems: S B1B, S B2B,…, S BLB shown in Figure 4.

 Figure 4: A subsystem consisting of several connected subsystems

Let Tq TBSB denote the Tn- Tvector of coordinates of bodies bordering the parents of S. Because of the definition of
bordering bodies, it follows that the vector Tq TBSB is the union of vectors Tq TBe PB

(k)
P(k=1..L). We can reorder the vector Tq TBSB

as

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
)(

)1(

L
e

e

S

q

q
q M (22)

Let Tg T denote the vector of equations of internal constraints between S B1B, S B2B,…, S BL B

() ()TT

cgg 00)()(1 KL == SS qqg (23)

By TG T we denote the transformed Jacobian

T
q
gG
S∂

∂
= (24)

Let TλT denote the vector of the Lagrange multipliers associated with the constraints between subsystems S B1 B, S B2 B,…,
S BL B. The equations of accelerations of subsystems are

Lkkkkk ...1)()()()(=+= rτDvS& (25)

2S1S

3S

S

2τ

1τ

LS

Here)(kτ is the vector of forces acting on bodies bordering to S BkB, and occurring in constraints external to S BkB.
Obviously, each of these constraints can be included in the system S or can be external to S. Therefore,)(kτ can
be represented as a sum

())()()(ˆ kTkk τλGτ += (26)

where

() λT
q

gλG S
S

T
k

k
Tk

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=)(
)(

)(is the vector of forces that occur in the constraints, included in S, and act on

 bodies bordering S BkB

)(ˆ kτ is the vector of forces that occur in the constraints external to S, and act on bodies bordering to S BkB

By substituting)(kτ in the equation X(25) X and grouping, we obtain the matrix equation

rτλGDvS ˆ)ˆ(ˆ ++= T& (27)

where

()
() () TTLT

Ldiag

⎟
⎠
⎞⎜

⎝
⎛=

=

)()1(

)()1(

ˆ

,,ˆ

rrr

DDD

K

K

(28)

(29)

Let Tq TBe B⊂

T

q TBSB be the Tm T-vector of coordinates of bodies bordering S. The dependency of ev& B Bon Sv& can be written
in the matrix form

Se vPv && = (30)

where TPT is a (m T,n T) matrix. Since not all bodies in S have external connections, we can write τ̂ as a product:

τPτ T=ˆ (31)

where τ is the Tm T-vector of forces acting in external constraints in S.

Substituting τ from the formula X(31) X in X(27) X, we get:

rτPDλGDvS ˆˆˆ ++= TT& (32)

Differentiating X(23) X twice, we obtain the equations of constraints on the acceleration level

uvGvGvG0 SSS +=+= &&& (33)

Now we substitute Sv& from the equation X(32) X and get

urGτPDGλGDG −−−= ˆˆˆ TT (34)

Using the same technique, as in the previous part, we can find the dependency of λ on τ

bSτλ += (35)

where

)ˆ()ˆ(

ˆ)ˆ(

urGGDGb

PDGGDGS

+−=

−=
+

+

T

TTT

 (36)

Finally, substituting λ in X(32) X and using X(30) X, we obtain the desired dependency of accelerations ev& on forces τ

rDτve +=& (37)

where

rPbGDPr

PDPSGDPD

ˆˆ

ˆˆ

+=

+=
T

TT

 (38)

Using the equation X(38) X, the subsystem calculates D and r and transmits them to its child.

4.4 Calculation of Forces on the Top of the Hierarchy

Iteratively repeating the previous step, we reach the top of the hierarchy. Let S denote a system of the highest
hierarchical level. Using the algorithm similar to the one we considered in the previous chapter, we obtain the
analogue of the equation X(27) X

rλGDvS ˆˆ += T& (39)

where

 Sv& is the vector of coordinates of bodies bordering the parents of S,
 Tg T is the vector of equations of constraints in S,

 λT
q
gλG E
E

T
T

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

= is the vector of forces acting in constraints in S,

 D̂ , r̂ are dependency matrices, transmitted by parents of S.

Therefore, using the algorithm similar to the one we considered in the previous chapter, we obtain λ

)ˆ()ˆ(urGGDGλ +−= +T (40)

The forces acting in the constraints between the parents of S are:

)ˆ()(1 urGGGMGλGt +−== +− TTTT (41)

Let)(τ k denote the vector of forces acting in the external links of S BkB, where S BkB is the TkT-th parent of S. Obviously,

)(τ k is a part of the vector t. In our algorithm S calculates)(τ k and transmits it to S BkB.

4.5 Backward Hierarchical Calculation of the Absolute Accelerations

Subsequently, each subsystem gets the current value of τ from its child.

If the subsystem is derived, then, using τ, it calculates from X(35) X the vector λ . Then for each parent S BkB the
subsystem calculates τ P

 (k)
Pfrom X(31) X, X(26) X and transmits it to the parent.

Otherwise, on the lowest level of the hierarchy, the subsystem calculates the vector λ from X(16) X. Substituting it
in X(12) X, we calculate the vector of accelerations iv& . From the equation X(19) X we get ev& .

Finally, the absolute accelerations of all bodies are calculated.

5 Main Idea of the Distributed Post-Stabilization

After the calculation of the accelerations, we perform the calculation of the absolute coordinates)(~

1+ktq and the
velocities)(~

1+ktv for the new time step, using a favourite ODE integration scheme (e.g. Runge-Kutta or some
multistep method).

However, for)(~

1+ktq our equations of constraints 0))(~(1 =+ktqg are not exactly satisfied, we have a drift
problem. Therefore, we need to stabilize the coordinates, so that the end result is closer to the constraint
manifold. Also we need to stabilize the velocities)(~

1+ktv in order to satisfy the equations of constraints on the

velocity level 0))(~(1 =+ktvh , where v
q
gh ~
~∂
∂

= .

In our tool we improved the post-stabilization technique proposed by Ascher, Chin (1995). For the sake of
simplicity, we show the distribution of the post-stabilization of velocities before the distribution of the post-
stabilization of the coordinates, though on each time step we perform post-stabilization of velocities after the
post-stabilization of the coordinates.

5.1 Stabilization of Velocities

Cline’s (2003) formulation of the post-stabilization process, implemented on the velocity level, can be written as

vvv Δ−= ++)(~)(11 kk tt (42)

where)(1+ktv is the vector of stabilized velocities,)(~

1+ktv is the vector of unstabilized velocities, and vΔ is the
stabilizing vector which is calculated as the part of the solution of the matrix equation

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++

++

))(~(
0

0))((
))(())((

11

11

kk

k
T

k

tt
tt

vhμ
v

qG
qGqM

 (43)

Here)(1+ktq is the vector of stabilized coordinates and μ is the vector of unknown parameters.

Comparing equations X(4) X and X(43) X, we see that the matrices in the left parts of both equations are the same.
Therefore, we can use the same distributed procedure of solving X(43) X that was used for the solving of X(4) X. During
the calculation of the accelerations, we performed the partitioning of the global vector of Lagrange forces λGT

on the subsystems. Now we need to do the same partitioning of the velocities’ shift μGT from X(43) X, using the
same hierarchy of subsystems. For each subsystem we define the vector υ of the velocities’ shift, acting in the
external constraints of the subsystem that is the analogue of Lagrange forces τ acting in the external constraints
of the subsystem.

Now, it is possible to perform the procedure similar to the distributed calculation of accelerations. Each
subsystem calculates matrices TBT and l (analogues of D and r), which describe the linear dependency of evΔ on

)(τ i

lBυve +=Δ (44)

Then the subsystem sends TBT and l to its child.

Having reached the highest level of the hierarchy, we start the backward hierarchical calculation of evΔ , in a
manner similar to the performance during the calculation of the accelerations. Each subsystem gets the current
value of υ from its child. Then for each parent S BiB the subsystem calculates)(iυ P

Pand transmits it to the parent. On

the lowest level of the hierarchy of subsystems we calculate vΔ and stabilize the velocities of the bodies.

5.2 Stabilization of Coordinates

For simplicity of notation let TA T denote the constraint Jacobian ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
q
g . Then the formulation of the post-

stabilization of coordinates can be written as

()
() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛Δ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ−=

++

++

++

))(~(
0

0)(~
)(~))((

)()(

11

11

11

kk

k
T

k

kk

tt
tt

tt

qgη
q

qA
qAqM

qqq

(45)

(46)

where)(1+ktq is the vector of stabilized coordinates)(~

1+ktq is the vector of unstabilized velocities, and qΔ is
the stabilizing vector.

It is obvious that this system of equations is similar to the formulation of the post-stabilization of velocities.
However, we should take into account, that the vector Tg T includes the equation of constraints connecting bodies
as well as the normalization conditions on the Euler parameters of bodies

01 =−kθ (47)

Therefore, we need to start our distributed calculation of qΔ not from the basic subsystems, but from the
bodies. At the beginning of the forward hierarchical step each body calculates its matrices N and z, which set the
dependencies of qΔ of coordinates of bodies on the coordinates’ shift ς acting in the bodies’ constraints

zNςq +=Δ (48)

Then the body sends TN T and z to its child. After that we repeat the procedure similar to the distribute stabilization
of velocities: during the forward hierarchical step subsystems calculate their matrices TN T, z and send them to their
children. During the backward hierarchical step subsystems get the current value of their ς from their children

and calculate)(iς P

Pof their parents. After the subsystems of the lowest level of the hierarchy have calculated ς of

their bodies, we can calculate the vector qΔ and stabilize the coordinates of the bodies.

6 Computation Complexity

Vlasenko (2006) showed that on each time step each subsystem performs O(n P

3
P+ TcTP

3
P) numerical operations during

the calculation of acceleration, where n is the total numbers of simulating bodies and Tc Tdenotes the number of
constraints. Since the distribute stabilization is performed in the similar way like the calculation of accelerations,
the complete complexity of the subsystem’s simulation is O(n P

3
P+ TcTP

3
P).

Consider now a well-partitioned mechanical system S, including N bodies. Let all subsystems on all levels of the
hierarchy have internal bodies and the number of bodies and internal constraints in each subsystem be limited by
the global constant D. Therefore, the computation complexity of each subsystem is limited by O(D P

3
P). Since all

subsystems have internal bodies, it follows that the total number of subsystems is limited by N. Finally, we
obtain that the global complexity of the computation complexity is O(N·D P

3
P).

7 Implementation

An object-oriented software Virtual Systems Developer (VSD) was developed based on the algorithm. In the
tool a simulated mechanical system is split into functional parts representing real components. A wide set of
objects, describing different types of constraints and forces, was developed: revolute joint, ball joint, stiff
connection, gravity force, torque, springs etc.

Using Autodesk Inventor API, an integration of the software with Autodesk Inventor was performed. Design
engineers can specify geometric and material data of simulation models in Inventor and then translate it into the
simulation tool. This approach minimizes the development cost of the model and the time of the training of end-
users.

8 Example of Simulation

A simulation of the car model shown in Figure 5 was performed. This example illustrates all advantages of the
method: the object-oriented simulation of multibodies, the stabilization of a closed-loop system, and the
numerical efficiency of the distributed simulation.

Figure 5: Car model

The complete model consists of 17 bodies coupled in several subsystems: four dampers, four suspensions, four
wheel subsystems. The bodies are connected by 20 joints. The hierarchy of submodels has three levels: the
subsystems of the first level are dampers and wheels, the subsystems of the second level are suspensions, and on
the highest level the complete car is situated.

The tyres of the car are simulated by springs with dampers. The model is stable by design because additional
springs are placed between wheels and ground acting in x and y direction.

We performed the emulation of the passenger that gets into the car by the additional force f (measured in
Newtons) acting in z-direction, the value of which depends on time t:

x

z

y

[]
⎪
⎩

⎪
⎨

⎧

>
∈⋅
<

=
6.2en wh 1000

6.2,5.2when 10)52(1000
5.2 when 0

t
t./.t-
t

f z (49)

The car is modelled by Autodesk Inventor and converted to VSD. The simulation time interval was chosen to be
[0s, 6s]. The integrator uses the Runge-Kutta algorithm of the fourth order with a fixed time step equal to
0.001s. Figure 6 shows the changes of the z-coordinate of the car body, measured in metres.

Data of the simulation show that the algorithm is stable and the drift of the model has order 10 P

-10
P, which is equal

to the accuracy of the model definition of Autodesk Inventor.

 Figure 6: z-coordinate of the car body

For the validation of our simulation results we have built up the same model in Simpack and performed the
simulation using Simpack's default integrator SODASRT, based on the DAE integrator DASSL. The
comparison shows that the dynamics of the model was calculated correctly. The absolute difference between Tz T-
coordinates of the car body in the VSD and in Simpack has order 10 P

-5
Pand is stable. This result is comparable

with other tests of DASSL integrator (e.g. the coordinate error of the simulation of a 2-D car truck performed by
Kunkel et. al (1997), the coordinate error of the simulation of Andrew’s squeezing mechanism, presented by
Hairer and Wanner (1996)).

In comparison with the simulation based on equations of motion X3) X - X(6) X, the partitioned simulation of the model
is about four times faster.

9 Conclusion

This paper presents a new algorithm that can be used as a basis for a very powerful tool VSD for component-
oriented simulation of the forward dynamics of multibody systems. It is based on the exact, non-iterative
method, which is applicable to mechanisms of any joint type and any topology, including branches and
kinematic loops. The simulation of well-partitioned systems has complexity O(N), where N is the total number
of simulated bodies.

An integration of VSD with Autodesk Inventor was developed. Models can be defined in Inventor and translated
into VSD without any redesign. This approach minimizes the development cost of models, and reusability of
submodels.

Experimental data show the stability of the method. The drift of the car model with the closed-loop structure is
limited for a long period of time and has order 10 P

-10
P, which is equal to the accuracy of the model definition

Autodesk Inventor. The comparison of simulations results with results obtained by Simpack software, shows
that the dynamics of the example was calculated correctly and accurately in VSD.

References

Ascher, U.; Chin, H.; Petzold, L. and Reich, S.: Stabilization of constrained mechanical systems with DAEs and

invariant manifolds. The Journal of Mechanics of Structures and Machines, 23(2), 135-157(1995).

Cellier, F.E.: Object-Oriented Modeling: Means for Dealing With System Complexity, Proc. 15th Benelux

Meeting on Systems and Control, Mierlo, The Netherlands, (1996), 53-64.

Chin, H.: Stabilization methods for simulation of constrained multibody dynamics, PhD thesis, Institute of
Applied Mathematics, University of British Columbia (1995).

Cline, M. B. and Pai, D. K.: Post-Stabilization for Rigid Body Simulation with Contact and Constraints Proc
IEEE Intl. Conf. on Robotics and Autom., (2003).

E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic
Problems. Springer–Verlag, Berlin Heidelberg New York, 2nd edition (1996).

Kasper, R.; Vlasenko, D.: Method for distributed forward dynamic simulation of constrained mechanical
systems. 5th EUROSIM Congress on Modelling and Simulation, S. 28, Paris. EUROSIM-FRANCOSIM-
ARGESIM, Volume I, ISBN 3-901608-28-1 (Book of Abstracts); Volume II, ISBN 3-901608-28 (Full
Papers CD Volume) (2004).

P. Kunkel, V. Mehrmann, W. Rath, J. Weickert, A new software package for linear differential-algebraic
equations, SIAM J. Sci Comput. 18, pp. 115-138 (1997),

Press, W. H.; Teukolsky, S. A. et al.: Numerical Recipes in C++ – The Art of Scientific Computing, Cambridge,
MA, Cambridge University Press, (2002).

Shabana, A.A.: Computational Dynamics, Wiley, New York (2001).

Vlasenko, D.: Component-oriented method for simulation of multibody dynamics, PhD thesis, Institute of
Mobile Systems, Otto-von-Guericke-University Magdeburg (2006).

Address: Prof. Dr.-Ing. Roland Kasper and Dr.-Ing. Dmitry Vlasenko, Institute of Mobile Systems (IMS), Otto-
von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg.
emailT: Roland.Kasper@mb.Uni-Magdeburg.de; T TDmitri.Vlasenko@mb.Uni-Magdeburg.de T.

	Algorithm for Component Based Simulation of Multibody Dynamics
	1 Introduction
	2 Description of Method
	3 Main Idea of the Distributed Calculation of Acceleration
	3.1 Hierarchical Generations of Equations of Motion
	3.2 Calculation of Forces on the Top of the Hierarchy
	3.3 Backward Hierarchical Calculation of the Absolute Accelerations

	4 Equations of the Distributed Calculation of the Acceleration
	4.1 Newton-Euler Equations of Motion
	4.2 Equations of Motion of a Basic Subsystem
	4.3 Building Up the Hierarchy
	4.4 Calculation of Forces on the Top of the Hierarchy
	4.5 Backward Hierarchical Calculation of the Absolute Accelerations

	5 Main Idea of the Distributed Post-Stabilization
	5.1 Stabilization of Velocities
	5.2 Stabilization of Coordinates

	6 Computation Complexity
	7 Implementation
	8 Example of Simulation
	9 Conclusion
	References

