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ABSTRACT 
This paper presents the modification of a non-iterative 
algorithm for the component-oriented simulation of the 
dynamics of multibodies. Now the method can be implemented 
for the component-oriented simulation of the dynamics of CAD 
systems with redundant constraints. Also the new version of the 
method is well-suitable for the implementation of sparse 
solvers. The algorithm was implemented in the Virtual System 
Designer (VSD) software, integrated with a CAD tool 
Autodesk Inventor. The simulation results of two CAD models: 
a car and a steam machine shows the method’s stability and 
accuracy. 

1. INTRODUCTION 
Computer Aided Design (CAD) tools allow engineers to 
develop, visualize and test a complete machine before the first 
prototype is ever produced. The use of CAD systems reduces 
the development costs and the modeling time.  

Since manufacturers need the simulation of multibody systems, 
designed in CAD tools, the coupling of CAD with multibody 
simulation software is strictly required. Different commercial 
tools such as Simpack or ADAMS allow the import of CAD 
data. Also was developed the integration of the CAD tool 
SolidWorks with Modelica simulation language [2] and with a 
Dynamic Analysis simulation tool DAP3D [1]. 

However, existing integration examples impose significant 
restrictions on CAD models: e.g. absence of redundant 
constraints [1] or a rigid fixing of one of the simulated bodies 
[2]. Moreover, nowadays for the simulation the motion of a 
CAD model the complete mechanical information (e.g. masses 
of bodies, types and parameters of joints) about the model’s 
subsystems is needful. Therefore, existing tools can not be 

implemented in situations when components are made by 
foreign manufactures who wish to protect the commercial 
classified information of their components (e.g. manufactures 
of motors do not provide the complete mechanical information 
and original CAD models of motors to manufactures of 
manipulators).  

In the last years we developed and implemented a method, 
based on the projection algorithm for absolute coordinates, 
which performs the component-oriented simulation of 
multibodies [6, 7]. In our method the model’s partition, defined 
during the model’s specification, remains during the simulation, 
i.e. we use the simulation based on the hierarchy of subsystems.  

The main advantages of the simulation on the basis of 
subsystems are:  

• Each subsystem can be modeled, tested and compiled 
independently. This significantly decreases the time and 
cost of the models’ development and test.  

• The commercial classified information of submodels is 
protected. A submodel works like a "black box" that has 
to provide only the strictly determined set of information 
via its interfaces. All submodel's internal data: parameters 
of constraints, forces, masses of internal bodies, etc. are 
unknown to the users of submodels.  

• Critical effects like Coulomb friction, backslash etc. can 
be encapsulated inside a subsystem. 

• Subsystems are ideal candidates for the partitioning of 
systems on multiple processors. 

• Mechanical subsystems are represented by separate 
objects which interact via predefined interfaces with each 
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other. Using such interface, simulation model can be 
easily extended by electronic and control components. 

Now we are strongly interested in the further increasing of the 
numerical efficiency of the simulation process in VSD. In this 
paper we show the modification of our method, which uses the 
decomposition of sparse matrices during the simulation of 
multibodies. It is suitable for the implementation of sparse 
solvers or a special preprocessing module, performing a 
symbolic simplification of decomposition of matrices [5].   

Also we discuss the simulation of models with redundant 
constraints. In many cases design engineers develop CAD 
models using the greater number of constraints than it is 
needful from the mechanical point of view. The redesign of 
CAD models and the elimination of redundant constraints by 
engineer is a very costly procedure. The correct simulation of 
CAD models with redundant constraints is shown in this paper.  

2. SIMULATION STEPS  
Fig. 1 shows the object-oriented method of the simulation of 
mechanical systems, implemented in VSD [6]. The base idea of 
the method is to perform the simulation of mechanical systems 
using the hierarchy of submodels that builds up the complete 
system.  

 

 

 

 

 

 

 

 

 

Figure 1. Data flow in simulation steps 

Submodels of the first level in general consist of connected 
bodies. Submodels of next levels (called children) consist, 
without loss of generality, of connected submodels (called 
parents). Since the main number of calculations proceeds 
inside of submodels, it follows that the simulation can be 
distributed easily on several processors. During the simulation 
at each time step the following tasks have to be performed: 

1. Distributed calculation of the absolute accelerations . )( ktv&

2. Calculation of the absolute coordinates and velocities at the 
next time step. Using a favorite ODE integration scheme 
(e.g. Runge-Kutta or some multistep method), the value of 
the absolute coordinates )(~

1+ktq  and velocities )(~
1+ktv  at 

the new time step can be obtained. 

3. Distributed stabilization of the absolute coordinates q(tk+1) 
and velocities v(tk+1). 

3. HIERARCHICAL CALCULATION OF THE 
ACCELERATIONS 

The distributed calculation of the accelerations 
consists of three steps, shown in Fig. 2: 
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Figure 2. Hierarchical calculation of 
the accelerations 

1. Starting from the lowest level of the hierarchy, each 
subsystem S generates the matrix D and the vector r using 
the equation of constraints connecting the parents. Here D 
and r show the linear dependency of  on τ S

bv&

rDτv += SS
b&  (1)

where  is the vector of accelerations of subsystem’s 
bordering bodies (i.e. bodies, connected outside the 
subsystem via external joints) and τ is the vector of forces 
in subsystem’s external links.  
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Then the subsystem transmits D and r to its child.  

2. The subsystem of the highest level S gets D and r matrices 
from its parents and calculates the forces acting in the 
constraints connecting the parents. Then to each parent Si 
the subsystems transmits the correspondent vector , 
where  is the vector of forces acting in the external 
constraints of Si.   

iSτ
iSτ

3. During the backward calculation of the accelerations each 
subsystem S gets the current value of  from its child. 
Then for each parent Si the subsystem calculates  and 
transmits it to the parent. Subsystems of the lowest level of 
hierarchy calculate the absolute accelerations of its bodies. 

Sτ
iSτ

The hierarchical projection of the absolute coordinates and 
velocities is performed in a similar way [6] and has the same 
order of complexity as the hierarchical calculation of the 
accelerations.  

3.1. Equations of motion of a basic subsystem 
Since the models are defined in CAD systems, it seems 
reasonable to use the absolute coordinates for the description of 
equations of motion. Moreover, if we use absolute coordinates, 
the equations of motion of models, can be partitioned to 
submodels accordingly the model’s partition, defined during 
the model’s design in CAD tool.  

 

 

 

 

 

Figure 3: A subsystem of several connected bodies 

Consider a basic subsystem S (i.e. the subsystem of the lowest 
level of the hierarchy), shown in Fig. 3, included in a complete 
simulating system. By n we denote the number of bodies in S. 

Let g denote the c-vector of equations of internal constraints: 

( ) ( TTS
c

S gg 00)()(1 KK == qqg )  (2)

where  is the 7n-vector of the absolute coordinates of the 
subsystem’s bodies, consisting of Cartesian coordinates and 
Euler parameters of bodies in inertial frame. 

Sq

Let  be the vector of Lagrange forces acting in external 
constraints. Suppose that the first m bodies are connected with 
the complete system by external joints, i.e. the first m bodies 
are bordering. Let  denote the 7m-vector of absolute 

coordinates of bordering bodies. Let  denote the 7(n-m)-

vector of absolute coordinates of internal bodies. Obviously, 
 can be written as: 

Sτ

S
bq

S
iq

Sq

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= S

i

S
bS

q
q

q  (3)

We partition the Jacobian matrix  into parts G

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

== S
i

S
b

ib q
g

q
gGGG  (4)

Here for simplicity of notation we omit the transformation 
matrix T describing the relation between the absolute 
coordinates and velocities: . The equations of 
motion, corresponding to the subsystem, are 

SSS vqTq )(=&

λGfvM

λGτfvM

i
T
i

S
ii

T
b

S
b

S
bb

+=

++=

&

&
 

(5)

(6)

where ),...,( 1 mb diag MMM =  is the mass matrix of bordering 
bodies, ),...,( 1 nmi diag MMM +=  is the mass matrix of internal 

bodies, ( )TT
m

T
b fff L1=  is the vector external forces 

acting on bordering bodies,  is the vector 
external forces acting on internal bodies. 

( TT
n

T
mi fff L1+= )

Differentiating twice (2), we obtain the equations of motion on 
the acceleration level: 1τ1

iq
1
bq

0=−+ uvGvG S
ii

S
bb &&  (7)

where . SvGu &−=
2
bq Substituting ,  from S

bv& S
iv& (5) and (6) in (7), we obtain 

uλGfMGλGτfMG =++++ −− )()( 11 T
iiii

T
b

S
bbb  (8)

or, in the other form 

aτMGλGGM +−= −− S
b

T
b

T 11  (9)

where .  fGMua 1−−=

If we find from (9) the dependency of λ  on τ: 

bKτλ += S  (10) 

then we can substitute it in (5), obtaining the dependency of  
on τ: 

ev&

SSSS
b rτDv +=&  (11)

where  

2
iq τ2

 3 Copyright © 2007 by ASME 



b
T
bb

S
b

T
bb

S

fGMr

MKGMD

+=

+=
−

−−

1

11

 
(12)

(13)

Consider now the process of calculation of K and b from (9). It 
can be easily checked that they can be calculated as the roots of 
the equation:  

BXGGM T1 =−  (14) 

where  and ( bKX = ) ( )aMGB 1
ee
−−= . 

Since the absolute coordinates of bodies are used, it follows 
that the matrices  and  are sparse. The standard 
solution, using the sparsity of the matrices [4], is based on the 
Cholesky decomposition of  where L is a non-
singular lower triangular matrix. Then 

1M− G

TLLM =
(14) can be written as 

BAXA =T  (15)

where . TGLA 1−=

If the matrix A is linearly independent (e.g. all rows of the 
Jacobian matrix G are independent), then using the QR-

decomposition of , we can calculate X as  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
R

QA

( ) BRRX
11 −−= T  (16)

However, in the case of redundant constraints G has dependent 
rows! As it was noted, in many cases design engineers develop 
CAD models, using the more number of constraints than it is 
needful from the mechanical point of view. The redesign of 
CAD models and the elimination of redundant constraints by 
engineer is very costly procedure. Moreover, on high levels of 
the hierarchy we will need to solve similar equations, where L 
is positive-semidefinite.  

That is why we propose to find the solution of (15) in the case 
when A has dependent columns. Consider this procedure more 
precisely.  

Clearly, if A has dependent columns then the product  is 
singular and the solution 

AAT

(15) is not unique. In our case we 
need only an arbitrary solution with limited norm. 

 Performing the QR-decomposition with pivoting of A, we 
obtain [3]: 

QRAΠ =  

⎟⎟
⎠

⎞
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⎝

⎛
=

00
21 RR

R  

(17)

(18)

Here Q is orthogonal matrix, П is a permutation and R1 is a 
non-singular and upper triangular (r, r) matrix, where 
r=rank(A). From the definition of П and Q follows that 

 and . Therefore, 1−= ΠΠT 1−= QQT (15) can be written as: 

BXRΠΠRXQRΠQΠRAXA === TTTTTT  (19)

or, in the other form: 

BXRR ~~
=T  (20)

where XПX T=
~ , BПB T=

~  are permutated vectors.  

Denoting by Y a product XRY ~
= , we can rewrite (20) as a 

system of equations: 
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or, in the other form: 
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(23)

Consider the matrix equation (23). The matrix R1 is non-
singular, therefore, the upper part of the system follows that Y1 
is uniquely defined:  

( ) ( ) 1
1

11
1

11
~~ BRBRY

TT −−
==  (24)

So, from the there lower part of the equation yields the 
restriction on the value of 2

~B : ( ) 1
1

122
~~ BRRB

TT −= . 

Substituting Y1 in (23), we obtain:  

( )
2

1
12211

~~~

y0
BRXRXR 1

=
=+ − T

 (25)

We need and arbitrary limited solution, hence we can set 2X~  to 
zero and obtain from (25) : 
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Since ППT=I, it follows that . Partitioning П into 
submatrices П=(П1, П2), we get: 

XПX ~
=

BПB T
11

~
= . Therefore, we 

obtain: 
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After the calculation of S and b, the subsystem calculates D 
and r from (12), (13) and transmits them to its child.  

3.2. Building up the hierarchy 
Consider a derived subsystem S (i.e. a subsystem of the high 
level of the hierarchy) consisting of L parent subsystems: S1, 
S2,…, SL shown in Fig. 4.  
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Figure 4: A subsystem consisting of several  
connected subsystems 

 

Let qS denote the n-vector of coordinates of bodies bordering 
the parents of S. Because of the definition of bordering bodies, 
it follows that the vector qS is the union of vectors  (k=1... 
L). We can reorder the vector qS as 

kS
bq
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Let g denote the vector of equations of internal constraints 
between S1, S2,…, SL  

( ) ( )TTS
c

S gg 00)()(1 KL == qqg  (29)

By G we denote the Jacobian matrix 
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b
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q
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q
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1
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 Let λ denote the vector of the Lagrange multipliers associated 
with the constraints between subsystems S1, S2,…, SL. The 
equations of accelerations of subsystems are: 

LkkSkSkSkS
b ...1=+= rτDv&  (31)

Here  is the vector of forces acting on bodies bordering Sk, 
which occur in constraints external to Sk. Obviously, each of 
these constraints can be included in the system S or can be 
external to S. Therefore, can be represented as a sum 

kSτ

kSτ

( ) )()( ˆ kTkkS τλGτ +=  (32)

where  is the vector of forces that occur in the 

constraints, included in S, and act on bodies bordering Sk ,  
is the vector of forces that occur in the constraints, external to 
S, and act on bodies bordering to Sk  

( ) λG
Tk )(

)(ˆ kτ

By substituting  in )(kτ (31) and grouping, we obtain the matrix 
equation 

rτλGDv ˆ)ˆ(ˆ ++= TS&  (33)

where 
1τ ′

2τ ′

2S1S

3S

S

LS

( )
( ) ( )( )TTLT
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)()1(

)()1(

ˆ

,,ˆ

rrr

DDD

K

K

=

=
 

(34)

(35)

Let qe qS be the m-vector of coordinates of bodies bordering 
S. The dependency of  on  can be written in the matrix 
form 

⊂
S
bv& Sv&

SS
b vPv && =  (36)

where P is a (m,n) matrix. Since not all bodies in S have 
external connections, it follows that we can write  as a 
product: 

τ̂

ST τPτ =ˆ  (37)

where  is the m-vector of forces acting in external 
constraints in S. 

Sτ

Substituting  from the formula Sτ (37) in (33), we get: 

rτPDλGDv ˆˆˆ ++= STTS&  (38)

Differentiating (29) twice, we obtain the equations of 
constraints on the acceleration level 

uvGvGvG0 −=+= SSS &&&  (39)

Now we substitute  from the equation Sv& (38) and get 

urGτPDGλGDG +−−= ˆˆˆ STT  (40)

Like in the previous part, we need to find the dependency of λ  
on  in the form  τ

bKτλ += S  (41)

Obviously, K and b can be calculated as the roots of the 
equation:  

BXGDG T =ˆ  (42) 

where ( )bKX =  and ( )rGuPDGB ˆˆ −−= T . From the 

definition yields that all  are positive-semidefinite. Since )(kD
( ))()1( ,,ˆ Ldiag DDD K= , it follows that D  is also positive-

semidefinite. Therefore, we can perform the Cholesky 
decomposition with pivoting of  where L is a 
lower triangular matrix and  is a permutation matrix. Like in 
the previous part, we obtain the matrix equation in the form 

ˆ

TT
11

ˆ ΠLLΠD =

1Π

BAXA =T  (43)
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where . From the definition yields that A is a 
sparse matrix, whose columns can be linearly dependent. Using 
the procedure, shown in the previous part, we calculate X.  

TTT GΠLA =

Finally, substituting λ  in (38) and using (36), we obtain the 
desired dependency of accelerations  on forces  ev& τ

rDτv += SS
b&  (44)

where 

rPbGDPr

PDPKGDPD

ˆˆ

ˆˆ

+=

+=
T

TT

 (45)

Using the equation (45), the subsystem calculates D and r and 
transmits them to its child.  

With minor changes the same procedure can be used on the 
highest level of the hierarchy.  

During the backward calculation of the accelerations each 
subsystem S gets the current value of  from its child. Then 
for each parent Si the subsystem calculates from 

Sτ
(32) the 

current values of  and transmits it to the parent. Subsystems 
of the lowest level of hierarchy calculate from 

iSτ
(11) the absolute 

accelerations of their bodies. 

4. POST-STABILIZATION OF CONSTRAINTS  
Usually projections methods are used in the integration 
methods, based on the index-one formulation of the equations 
of motion 
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⎠
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⎜⎜
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⎛

=
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)(

0)(
)(

vqu
qf

λ
v

qG
qGM

vq
&

&

T  
(46)

(47)

where q is the vector of coordinates; v is the vector of velocity 
variables; f is the vector of external forces; g is the vector of 
(holonomic) constraints; M is the mass matrix; λ  is the vector 
of Lagrange multipliers; G  is the constraint Jacobian matrix; 
and . vGu ⋅−= &

Clear, that the solution of (46)-(47) should satisfy the equations 
of constraints on the coordinate and on the velocity level 

0)(
0)(
=

=
vqG

qg
 

(48)

(49)

After solving (47) for the accelerations , the values of the 
coordinates 

v&
q~  and the velocities v~  at the next time step are 

calculated, using standard ODE integration schemes (e.g. 
Runge-Kutta or multistep). But now we get so-called drift 
effect: equations of constraints (48)-(49) are not fulfilled 
completely. That is why we need to project the coordinates and 
the velocities 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

+⎟⎟
⎠

⎞
⎜⎜
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⎛
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⎠

⎞
⎜⎜
⎝

⎛
v
q

v
q

v
q

~
~

 (50)

where q and v are the stabilized coordinates and velocities and 
qΔ  and vΔ  are the stabilization displacements. Usually qΔ  

and vΔ  are calculated as the minimal norm solutions of the 
equations 

)~,~()~(
)~()~(
vqgvqG

qgqqG
&−=Δ

−=Δ
 

(51)

(52)

Really it is not necessary that the stabilizing displacements qΔ  
or vΔ  will be minimal: we need only that they satisfy (51), 
(52) and has the same order as the accuracy of the used ODE 
integration scheme.  

If redundant constraints are included in the system (i.e. G has 
dependent rows), the computation of the minimal norm solution 
of (51) is very costly because we need to perform the singular 
value decomposition or the complete orthogonal decomposition 
of G [3].   

5. ALGORITHM OF THE DISTRIBUTED 
PROJECTION 

Let us show how we can distributing the process of the 
stabilization at the component-oriented way. In our method we 
perform the projection of the coordinates and of the velocities. 
Since the stabilization of the coordinates and the velocities are 
similar, we consider in this paper only the stabilization of the 
coordinates. The minor difference is that on the coordinate 
level we need to stabilize normalization conditions on the Euler 
parameters of bodies. 

Our method is based on the representation of the vector kqΔ , 
projecting the coordinates of an arbitrary body, as the sum of 
vectors: 

)...( )()2()1( m
k zzzyq +++−=Δ  (53)

where y is the displacement of the body coordinates, stabilizing 
the normalization condition Euler parameters of the body, z(i) is 
the displacement, stabilizing constraints in a subsystem Si (i>0), 
where the body is included.  

The distributed stabilization of constraints consists of five 
steps, similar to the steps of the distributed calculation of 
accelerations: 

1. Each body calculates dependency matrices Ub and cb: 

bkbk czUq +=Δ  (54)

where  is the displacement of the body, stabilizing 
equations of constraints on the higher level of the hierarchy 
of submodels. Then the body transmits Ub and cb to its 
submodel of the first level of hierarchy. 

kz
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2. During the forward hierarchical generations of 
stabilization’s equations each subsystem S gets from its 
parents S1, S2…Sl their dependency matrices  and : iS

bU iS
bc

liiS
b

iS
b

iS
b

iS
b ..1=∀+=Δ czUq  (55)

where is the projection vector of bordering bodies of 

the i-th parent,  is the displacement of bordering bodies 
of the i-th parent, stabilizing the external constraints of the 
parent. Then the subsystem S generates dependency 
matrices  and : 

iS
bqΔ

iS
bz

bU bc

b
S
bb

S
b czUq +=Δ  (56)

where  is the projection vector of bordering bodies of 

S,  is the displacement of bordering bodies of S, 
stabilizing the external constraints of S. Then the subsystem 
transmits  and  to its child.  

S
bqΔ

S
bz

bU bc

3. On the highest level of the hierarchy the main subsystem S 
gets from its parents their dependency matrices  and  
and calculates for each parent Si the correspondent 
displacement , stabilizing the external constraints of the 
parent. 

iS
bU iS

bc

iS
bz

4. During the backward hierarchical calculation of 
displacements each subsystem S gets the current value of 

 from its child. Using the formula for , the subsystem 
calculates the displacement of bordering bodies of its 
parents , defined earlier. Then the subsystem sends  
to its parents.  

S
bz S

bz

iS
bz iS

bz

5. On the lowest level of the hierarchy each body gets the 
current value of  from its subsystem of the first level of 
the hierarchy. Using 

kz
(54), the value of  is calculated 

and the coordinates of the body are projected: 
kqΔ

kk qqq Δ+= ~  (57)

Consider now the procedure of the distributed post-stabilization 
of constraints more precisely. 

5.1. Body level 
Let us have a look at a row of (51), corresponding to the 
normalization condition of the Euler parameters of the k-th 
body: 

)~()~( kkkkk g qqqG −=Δ  (58)

where  is the vector of 

bodies coordinates,  is the 

normalization condition of the Euler parameters of the body, 

( )Tk
k eeeexxx 3210321,=q

12
3

2
2

2
1

2
0 −+++= eeeeg k

k

k
k g

q
G

∂
∂=  is the Jacobian matrix of the condition, 

Let us assume that the body is connected with other bodies, i.e. 
the coordinates of the body are included in the other equations 
of constraints. Now we represent the vector kqΔ  as the sum of 
two vectors: 

kkk zyq +=Δ  (59)

where  is the displacement, stabilizing gk, and  is the 
displacement of the body, stabilizing equations of constraints 
on the higher level of the hierarchy of submodels. If norms of 

 and  are minimal then we can be sure that the vector 

ky kz

ky kz

kqΔ  is limited and is small enough.  

Substituting kqΔ   in (58), we  get the dependency 

kkkkk zGgyG −−=  (60)

Therefore, we obtain the dependency of   on : ky kz

cBzy += kk  (61)

where B and c are the minimal norm solutions of the equations 

kk

kk

GBG
gcG
−=
−=

 
(62)

(63)

Since we are interested in the minimal norm solution of (62) 
and (63) and , it follows that B and c can be calculated using 
the formulas  

k
T
kk

T
kk

T
k

k
T
kk

T
kk

T
k

eeee

eeee

GGGGGGB

gGgGGGc

)(4
1)(

)(4
1)(

2
3

2
2

2
1

2
0

1

2
3

2
2

2
1

2
0

1

+++
−=−=

+++
−=−=

−

−

 

(64)

 

 

(65)

Substituting yk in (59), we obtain  

cUzq +=Δ kk  (66)

where EBU += . After the calculation of U  and c  the body 
sends them to its child.  

5.2. Subsystem level 
Consider a subsystems S. The rows of (51), corresponding to 
the equations of constraints of S, have the form:  

)~()~( SSSSS qgqqG −=Δ  (67)
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where  is the vector of coordinates of subsystem’s bodies; 

 is the vector of equations of subsystem’s constraints; 

Sq

)( SS qg

S

S
S

q
gG

∂
∂=  is the Jacobian matrix of the constraints. 

Let S1, S2…Sk denote the parents of S. Obviously, 

, where  is the vector of coordinates of 
bordering bodies of Si. On the previous level of the hierarchy 
we already calculated the matrices ,  for each parent Si  

( )TkS
b

S
b

S qqq ...1= iS
bq

iS
bU iS

bc

kiiS
b

iS
b

iS
b

iS
b ..1=∀+=Δ czUq  (68)

Now we can write the formula for : SqΔ

bb
S czUq ′+′′=Δ  (69)

where 

( )
( )TkS

b
S
bb

TkS
b

S
bb

iSdiag

ccc

zzz

UU

...

...

)(

1

1

=′

=′

=′

 (70)

Substituting this equation in (67), we get 

bzH =′  (71)

where  and . UGH ′= S
b

SS cGgb ′−−=

Let  be the vector of coordinates of the bordering bodies in 

S. Let  be the vector of coordinates of the internal bodies in 

S. It is clear, that  consists of  and  

S
bq

S
iq

Sq S
iq S

bq

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= S

i

S
b

ibS
i

S
bS

q
q

PP
q
q

Pq ,1,11  (72)

where P1 is a permutation matrix. In future we will need the 
backward dependency: 

S
i

S
i

S
b

S
b

qPq

qPq

,2

,2

=

=
 

(73)

(74)

Let us now represent  as the sum of two vectors: z′
SS zyz +=′  (75)

where  is the displacement, stabilizing the subsystem’s 

constraints and  is the displacement, stabilizing equation of 
constraints on the higher levels of the hierarchy of subsystems. 
Since the internal bodies of S are not connected on the higher 
levels of the hierarchy, it follows that  has the structure 

Sy
Sz

Sz

( ) S
bb

S
b

ib
S zP

z
PPz ,1,1,1 0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (76)

where  is the part of , corresponding to the displacements 
of bordering bodies of S.  

S
bz Sz

Substituting (75) and (76) in (71), we get 

bzPHy +−= S
bb

S
,1  (77)

Now we need to calculate the dependency of   on  in the 
form 

Sy S
bz

dBzy += S
b

S  (78)

Since  should be small enough, it follows that the norms of 
matrices B and c should be minimal. That is why we calculate 
B and c as the part of the minimal norm solution of the 
equations: 

Sy

KHX =  (79)

where ( )dBX =  and ( )bHPK b,1−= .  

Since the subsystem can include redundant constraints, it 
follows that rows of  can be linearly dependent. The matrix SG

bU′  is a block-diagonal matrix, consisting of positive-
semidefinite submatrices. Therefore, usually H is a sparse, 
rank-deficient matrix. We can not calculate the minimal norm 
solution of (79) using the QR-decomposition of H, but now we 
need to perform more costly calculations: the complete 
orthogonal decomposition (COD) or the singular value 
decomposition (SVD). The advantage of the computation of 
COD in comparison with the computation of SVD is that it is a 
non-iterative procedure, therefore, it is more suitable for the 
real-time simulation.  

The complete orthogonal decomposition of H can be written as 
[3]: 

T
2

1
1 00

0
Q

R
QH ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (80)

where Q1 and Q2 are orthogonal matrices and  is upper 
triangular. Then the least square solution of 

1R
(79) is  

KQ
R

QX T
1

1
1

2 00
0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

 (81)

After the calculation of B and d we substitute (78) and (76)  in 
(75) and obtain 

dzPBzPdBzzyz ++=++=+=′ S
bb

S
bb

S
b

SS )( ,1,1  (82)

Substituting z′  in (69), we get  
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cUzq +=Δ S
b

S  (83)

where  and )( ,1 bPBUU +′= bcdUc ′+′= .  

Finally, using (73), we express  as S
bqΔ

b
S
bb

S
b czUq +=Δ  (84)

where  and .  S
b

S
b UPU ,2= S

b
S
b cPc ,2=

After the calculation of  and  the subsystem sends them 
to its child. Also in future we will need the formula for the 
calculation of  

S
bU S

bc

z′

czPBz ++=′ S
bb )( ,1  (85)

With minor changes the same procedure can be used on the 
highest level of the hierarchy.  

During the backward hierarchical calculation of displacements 
each subsystem gets  from its child and calculates from bz (82) 
the vector . At the end of the process each body calculates 
from 

z′
(66) its stabilizing displacement . kqΔ

6. SIMULATION OF A STEAM MACHINE 
We implemented our method in VSD and performed the 
simulation of the high-realistic model of a three-cylinder steam 
machine, shown in Fig. 5. The machine was developed in 
Autodesk Inventor as an assembly, consisting of 13 bodies 
connected by 19 links. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Autodesk Inventor model of  
a three-cylinder steam machine 

An angular velocity of 1.96 radians per second was applied to 
the shaft of the mechanisms with a simulation time of 1 second. 

In Fig. 6 is shown the velocity of the left piston in the z-
direction. Data of the simulation show that the algorithm is 
stable and the drift of the model has order 10-10, which is equal 
to the accuracy of Autodesk Inventor model’s definition.  
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Figure 6. Velocity of the left piston in the z-direction 

7. SIMULATION OF A CAR MODEL 
We performed the simulation of the model of a car, shown in 
Fig. 7. The MODEL was developed in Autodesk Inventor as 3-
level assembly, consisting of 17 bodies connected by 20 joints. 
A more detailed description of the model can be found in [6]. 

 

 

 

 

 

 

 

 

Figure 7: Autodesk Inventor car model 

We performed the emulation of the passenger who gets into the 
car by the additional force f acting in z-direction, the value of 
which depends on time t:  

[
⎪
⎩

⎪
⎨

⎧

>
∈⋅
<

=
6.2en         wh          1000

6.2,5.2when 10)52(1000
5.2   when                     0

t
t./.t-
t

f z ]  (86)

The subsystem of the highest level of the hierarchy includes 12 
joints, connecting 13 bodies. The density of the matrix A from 
(15) is 15.6% and the density of H from (79) is 20.4%.  

Fig. 8 shows the changes of the z-coordinate of the car body. 
Data of the simulation show that the algorithm is stable and the 
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drift of the model has order 10-10, which is equal to the 
accuracy of Autodesk Inventor model’s definition. 

 

 

 

 

 

 

 

 

 

Figure 8: Z-coordinate of the car body 

8. CONCLUSION AND FUTURE WORK 
This paper introduces the modification of the method for the 
component-oriented simulation of dynamics of CAD models. 
The method was implemented in the VSD software, used for 
the simulation of the dynamics of a steam machine and of a 3D-
car model. The simulation results show that method is stable 
and can be implemented for the wide set of multibody systems. 

During the simulation of multibodies only the sparse matrices 
should be decomposed, that makes the method suitable for the 
implementation of sparse solvers or a special preprocessing 
module, performing a symbolic simplification of the 
decomposition of matrices [5]. The further integration of the 
preprocessing module with VSD will significantly increase the 

power of the software and the numerical efficiency of the 
software.  
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