
MULTIBODY DYNAMICS 2005, ECCOMAS Thematic Conference
C.L. Bottasso, P. Masarati, L. Trainelli (eds.)

Milano, Italy, 25–28 June 2007

SPARSE MATRIX METHOD FOR COMPONENT-ORIENTED
DYNAMIC SIMULATION OF MULTIBODIES IN VSD SOFTWARE

Dmitry Vlasenko, Roland Kasper

∗Institute of Mobile Systems (IMS), Otto-von-Guericke-University Magdeburg
Universitätsplatz 2, D-39016 Magdeburg, Germany

e-mails: Dmitri.Vlasenko@Masch-Bau.Uni-Magdeburg.DE,
Roland.Kasper@Masch-Bau.Uni-Magdeburg.DE

Keywords: Object-oriented simulation, multibody, QR-decomposition, sparse matrices, sym-
bolic computations.

 1

Abstract. This paper presents a new algorithm for the component-oriented simulation of mo-
tion of multi-rigid-body systems, based on the decomposition of sparse matrices. The imple-
mentation of the method was sufficiently performed in Virtual System Designer (VSD)
software, which is able to calculate the dynamics of CAD models because of its integration
with a CAD tool Autodesk Inventor. The presented algorithm is well-suited for the use of a
preprocessing module, performing the symbolic simplification of decompositions of sparse
matrices, which significantly reduces the numerical costs of the simulation. Example of a
CAD model of a double insulator chain illustrates the effectiveness of the method.

mailto:Dmitri.Vlasenko@Masch-Bau.Uni-Magdeburg.DE
mailto:Roland.Kasper@Masch-Bau.Uni-Magdeburg.DE

Dmitry Vlasenko, Roland Kasper

1 INTRODUCTION

In the last years we developed and implemented the method, performing the component-
oriented simulation of holonomic rigid body systems [1, 2]. In contrast to standard algorithms
we preserve during the simulation the partitions of models, defined during the design of the
models, i.e. we use the simulation based on the hierarchy of subsystems.

The main advantages of the simulation on the basis of subsystems are:
• Each subsystem can be modelled, tested and compiled independently. This signifi-

cantly decreases the time and cost of the models’ development and test. Redesign
and reuse of components is more effective and easier.

• The commercial classified information of submodels is protected. A submodel
works like a "black box" that has to provide only the strictly determined set of in-
formation via its interfaces. All submodel's internal data: parameters of constraints,
forces, masses of internal bodies, etc. are unknown to the users of submodels.

• Critical effects like Coulomb friction, backslash etc. can be encapsulated inside a
subsystem.

• The simulation of big good-partitioned models costs O(N) numerical operations,
where N denotes the total number of bodies in the simulation model.

• Subsystems are ideal candidates for the partitioning of systems on multiple proces-
sors.

We implemented the method and created an object-oriented software Virtual Systems De-
signer (VSD), integrated with a CAD tool Autodesk Inventor, simulating the dynamics of
CAD models of mechanical systems.

Now we are strongly interested in the further increasing of the numerical efficiency of the
simulation process in VSD. One of the most time-expensive routines of the simulation process
in VSD is the calculation of accelerations. Some standard methods for the undistributed simu-
lation of multibodies significantly improve their numerical efficiency taking into account the
sparse structure of matrices [3]. Unfortunately, sparse methods were not effective in VSD,
since the decomposition of matrices with a high non-zero density was needed.

In this article we show the improvement of the method, which performs the calculation of
accelerations, based on the solution of sparse linear systems.

We also developed a preprocessing module in Maple software, performing the symbolic
simplification of decompositions of matrices, which has several advantages in comparison
with standard sparse solvers:

• Sparse structure of matrices is used completely without any run time overhead.

• The numerical operations with numerical elements of matrices are performed al-
ready during the translation.

• Additional operations with arrays of indexes (like in usual sparse solvers) are not
needed.

We used VSD for the calculation of dynamics of a CAD model of a double insulator chain.
The results show that the integration of the preprocessing module with the new version of
VSD significantly reduces the computation cost of the simulation of multibodies.

 2

2 SIMULATION STEPS
Fig. 1 shows the object-oriented method of the simulation of mechanical systems, imple-

mented in VSD [2]. The base idea of the method is to perform the simulation of mechanical
systems using the hierarchy of submodels that builds up the complete system.

Dmitry Vlasenko, Roland Kasper

Figure 1: Data flow in simulation steps

Submodels of the first level in general consist of connected bodies. Submodels of next lev-
els (called children) consist, without loss of generality, of connected submodels (called par-
ents). Since the main number of calculations proceeds inside of submodels, it follows that the
simulation can be distributed easily on several processors. During the simulation at each time
step the following tasks have to be performed:

1. Distributed calculation of the absolute accelerations .)(ktv&
2. Calculation of the absolute coordinates and velocities at the next time step. Us-

ing a favorite ODE integration scheme (e.g. Runge-Kutta or some multistep
method), the value of the absolute coordinates)(~

1+ktq and velocities)(~
1+ktv at

the new time step can be obtained.
3. Distributed stabilization of the absolute coordinates q(tk+1) and velocities v(tk+1).

3 HIERARCHICAL CALCULATION OF THE ACCELERATIONS
The distributed calculation of the accelerations consists of three steps, shown in Fig. 2:

1. Starting from the lowest level of the hierarchy, each subsystem S generates the ma-
trix D and the vector r using the equation of constraints connecting the parents.
Here D and r show the linear dependency of on τ S

bv&

 rDτv += SS
b& (1)

where is the vector of accelerations of subsystem’s bordering bodies (i.e. bod-
ies, connected outside the subsystem via external joints) and τ is the vector of
forces in subsystem’s external links.

S
bv&

Then the subsystem transmits D and r to its child.
2. The subsystem of the highest level S gets D and r matrices from its parents and cal-

culates the forces acting in the constraints connecting the parents. Then to each par-
ent Si the subsystems transmits the correspondent vector , where is the
vector of forces acting in the external constraints of Si.

iSτ iSτ

 3

)(),(kk tt vq

)(ktv&

)(~),(~
11 ++ kk tt vq

Calculation of
accelerations

Integration

Stabilization

)(),(11 ++ kk tt vq

Dmitry Vlasenko, Roland Kasper

)(),(kk tt vq

Figure 2: Hierarchical calculation of the accelerations

3. During the backward calculation of the accelerations each subsystem S gets the cur-
rent value of from its child. Then for each parent Si the subsystem calculates

 and transmits it to the parent. Subsystems of the lowest level of hierarchy cal-
culate the absolute accelerations of its bodies.

Sτ
iSτ

The hierarchical projection of the absolute coordinates and velocities is performed in a
similar way [2] and has the same order of complexity as the hierarchical calculation of the
accelerations.

3.1 Equations of motion of a basic subsystem
Since the models are defined in CAD systems, it seems reasonable to use the absolute co-

ordinates for the description of equations of motion. Moreover, if we use absolute coordinates,
the equations of motion of models can be partitioned to submodels accordingly the model’s
partition, defined during the model’s design in CAD tool.

Consider a basic subsystem S (i.e. the subsystem of the lowest level of the hierarchy),
shown in Fig. 3, included in a complete simulating system. By n we denote the number of
bodies in S.

Figure 3: A subsystem of several connected bodies

Let g denote the c-vector of equations of internal constraints:

D(1) r (1)

D(1,1) r(1,1)
 D(1,2) r (1,2)

 D(2,1) r (2,1)
 D(2,2) r (2,2)

)(ktv&

 4

D(2) r (2)

 S1,1 S1,2 S2,1 S2,2

S1 S2

S

S1 S2

 S2,2 S1,2 S1,1 S2,1

1
eq

2
eq

1
iq

1τ

2
iq 2τ

1Sτ 2Sτ

1,1Sτ 2,1Sτ 1,2Sτ 2,2Sτ

Dmitry Vlasenko, Roland Kasper

() ()TTS
c

S gg 00)()(1 KK == qqg (2)

where is the 7n-vector of the absolute coordinates of the subsystem’s bodies, consisting of
Cartesian coordinates and Euler parameters of bodies in inertial frame.

Sq

Let be the vector of Lagrange forces acting in external constraints. Suppose that the
first m bodies are connected with the complete system by external joints, i.e. the first m bodies
are bordering. Let denote the 7m-vector of absolute coordinates of bordering bodies. Let

 denote the 7(n-m)-vector of absolute coordinates of internal bodies. Obviously, can be
written as:

Sτ

S
bq

S
iq Sq

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= S

i

S
bS

q
q

q (3)

We partition the Jacobian matrix G into parts

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

== S
i

S
b

ib q
g

q
gGGG (4)

Here for simplicity of notation we omit the transformation matrix T describing the relation
between the absolute coordinates and velocities: . The equations of motion, cor-
responding to the subsystem, are

SSS vqTq)(=&

λGfvM

λGτfvM

i
T
i

S
ii

T
b

S
b

S
bb

+=

++=

&

&

(5)

(6)

where
 is the mass matrix of bordering bodies),...,(1 mb diag MMM =
 is the mass matrix of internal bodies),...,(1 nmi diag MMM +=

 is the vector external forces acting on bordering bodies (TT
m

T
b fff L1=)

) is the vector external forces acting on internal bodies (TT
n

T
mi fff L1+=

Differentiating twice (2), we obtain the equations of motion on the acceleration level:
0=−+ uvGvG S

ii
S
bb && (7)

where . SvGu &−=

Substituting , from S
bv& S

iv& (5) and (6) in (7), we obtain
uλGfMGλGτfMG =++++ −−)()(11 T

iiii
T
b

S
bbb (8)

or, in the other form
aτMGλGGM +−= −− S

b
T
b

T 11 (9)

where . fGMua 1−−=
If we find from (9) the dependency of λ on τ:

bKτλ += S (10)

then we can substitute it in (5), obtaining the dependency of on τ: ev&

 5

SSSS
b rτDv +=& (11)

Dmitry Vlasenko, Roland Kasper

where

b
T
bb

S

b
T
bb

S

fGMr

MKGMD

+=

+=
−

−−

1

11

(12)

(13)

 Consider now the process of calculation of K and b from (9). It can be easily checked
that they can be calculated as the roots of the equation:

BXGGM T1 =− (14)

where and ()bKX = ()aMGB 1
ee
−−= .

Since the absolute coordinates of bodies are used, it follows that the matrices and
are sparse. The standard solution, using the sparsity of the matrices [3], is based on the Chole-
sky decomposition of where L is a non-singular lower triangular matrix. Then

1M− G

TLLM = (14)
can be written as

BAXA =T (15)

where . TGLA 1−=
If the matrix A is linearly independent (e.g. all rows of the Jacobian matrix G are inde-

pendent), then using the QR-decomposition of , we can calculate X as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
R

QA

() BRRX 11 −−= T (16)

However, in the case of redundant constraints G has dependent rows! As it was noted, in
many cases design engineers develop CAD models, using the more number of constraints
than it is needful from the mechanical point of view. The redesign of CAD models and the
elimination of redundant constraints by engineer is very costly procedure. Moreover, on high
levels of the hierarchy we will need to solve similar equations, where L is positive-
semidefinite.

That is why we propose to find the solution of (15) in the case when A has dependent col-
umns. Consider this procedure more precisely.

Clearly, if A has dependent columns then the product is singular and the solution AAT

(15) is not unique. In our case we need only an arbitrary solution with limited norm.
 Performing the QR-decomposition with pivoting of A, we obtain [4]:

QRAΠ =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
21 RR

R
(17)

(18)

Here Q is orthogonal matrix, П is a permutation and R1 is a non-singular and upper trian-
gular (r, r) matrix, where r=rank(A). From the definition of П and Q follows that 1−= ΠΠT
and . Therefore, 1−= QQT (15) can be written as:

BXRΠΠRXQRΠQΠRAXA === TTTTTT (19)
or, in the other form:

BXRR ~~ =T (20)

where XПX T=~ , BПB T=~ are permutated vectors.

 6

Denoting by Y a product XRY ~= , we can rewrite (20) as a system of equations:

Dmitry Vlasenko, Roland Kasper

BXR

YXR
~

~

=

=
T

 (21)

or, in the other form:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

2

1

2

121

~
~

0
0

~
~

00

B
B

Y
Y

R
R

Y
Y

X
XRR

T

T

(22)

(23)

Consider the matrix equation (23). The matrix R1 is non-singular, therefore, the upper part

of the system follows that Y1 is uniquely defined:

() () 1
1

11
1

11
~~ BRBRY TT −−

== (24)

So, from the lower part of the equation yields the restriction on the value of 2
~B :

() 1
1

122
~~ BRRB TT −= .

Substituting Y1 in (23), we obtain:
()

2

1
12211

~~~

y0
BRXRXR 1

=
=+ − T

 (25) 

We need and arbitrary limited solution, hence we can set 2X~  to zero and obtain from (25) : 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−−

0

~~ 1
1

1
1

1 BRRX
T

 (26) 

Since ППT=I, it follows that XПX ~= . Partitioning П into submatrices П=(П1, П2), we get: 
BПB T

11
~ = . Therefore, we obtain: 

( ) ( ) BПRRПBRRПX ~
0

~
1

1
1

1
11

1
1

1
1

1 TT
T

−−
−−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  (27) 

After the calculation of S and b, the subsystem calculates D and r from (12), (13) and 
transmits them to its child.  

3.2 Building up the hierarchy 
Consider a derived subsystem S (i.e. a subsystem of the high level of the hierarchy) con-

sisting of L parent subsystems: S1, S2, … , SL shown in Fig. 4.  
 
 
 
 
 
 
 

Figure 4: A subsystem consisting of several connected subsystems 

Let qS denote the n-vector of coordinates of bodies bordering the parents of S. Because of 
the definition of bordering bodies, it follows that the vector qS is the union of vectors  

(k=1... L). We can reorder the vector qS as 

kS
bq

 7

1τ ′

2τ ′

2S1S

3S

S

LS



Dmitry Vlasenko, Roland Kasper 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
LS

b

S
b

S

q

q
q M

1

 (28)

Let g denote the vector of equations of internal constraints between S1, S2,…, SL  

( ) ( )TTS
c

S gg 00)()(1 KL == qqg  (29) 

By G we denote the Jacobian matrix 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

==
LS

b
S
b

L

q
g

q
gGGG ......

1

)()1(  (30) 

 Let λ denote the vector of the Lagrange multipliers associated with the constraints be-
tween subsystems S1, S2,…, SL . The equations of accelerations of subsystems are: 

Lkkkkk SSSS
b ...1=+= rτDv&  (31) 

Here  is the vector of forces acting on bodies bordering Sk, which occur in constraints 
external to Sk. Obviously, each of these constraints can be included in the system S or can be 
external to S. Therefore, can be represented as a sum 

kSτ

kSτ

( ) )()( ˆ kTkSk τλGτ +=  (32) 

where  
( ) λG Tk )(  is the vector of forces that occur in the constraints, included in S, and act on 

 bodies bordering Sk  
)(ˆ kτ  is the vector of forces that occur in the constraints, external to S, and act on bod-

ies bordering to Sk  
By substituting  in )(kτ (31) and grouping, we obtain the matrix equation 

rτλGDv ˆ)ˆ(ˆ ++= TS&  (33)
where 

( )
( ) ( )( )TTLT

Ldiag
)()1(

)()1(

ˆ

,,ˆ

rrr

DDD

K

K

=

=
 

(34)

(35)

Let qe qS be the m-vector of coordinates of bodies bordering S. The dependency of  on 
 can be written in the matrix form 

⊂ S
bv&

Sv&
SS

b vPv && =  (36) 

where P is a (m,n) matrix. Since not all bodies in S have external connections, it follows that 
we can write  as a product: τ̂

STτPτ =ˆ  (37) 

where  is the m-vector of forces acting in external constraints in S. Sτ
Substituting  from the formula Sτ (37) in (33), we get: 

rτPDλGDv ˆˆˆ ++= STTS&  (38) 

Differentiating (29) twice, we obtain the equations of constraints on the acceleration level 

 8

uvGvGvG0 −=+= SSS &&&  (39) 



Dmitry Vlasenko, Roland Kasper 

Now we substitute  from the equation Sv& (38) and get 

urGτPDGλGDG +−−= ˆˆˆ STT  (40) 

Like in the previous part, we need to find the dependency of  on  in the form  λ τ

bKτλ += S  (41) 

Obviously, K and b can be calculated as the roots of the equation:  

BXGDG T =ˆ  (42) 

where  and ( )bKX = ( )rGuPDGB ˆˆ −−= T . From the definition yields that all  are 
positive-semidefinite. Since 

)(kD
( ))()1( ,,ˆ Ldiag DDD K= , it follows that  is also positive-

semidefinite. Therefore, we can perform the Cholesky decomposition with pivoting of 
 where L is a lower triangular matrix and  is a permutation matrix. Like in 

the previous part, we obtain the matrix equation in the form 

D̂

TT
11

ˆ ΠLLΠD = 1Π

BAXA =T  (43) 

where . From the definition yields that A is a sparse matrix, whose columns can 
be linearly dependent. Using the procedure, shown in the previous part, we calculate X.  

TTT GΠLA =

Finally, substituting λ  in (38) and using (36), we obtain the desired dependency of accel-
erations  on forces  ev& τ

rDτv += SS
b&  (44) 

where 

rPbGDPr

PDPKGDPD

ˆˆ

ˆˆ

+=

+=
T

TT

 (45) 

Using the equation (45), the subsystem calculates D and r and transmits them to its child.  
With minor changes the same procedure can be used on the highest level of the hierarchy.  
During the backward calculation of the accelerations each subsystem S gets the current 

value of  from its child. Then for each parent Si the subsystem calculates from Sτ (32) the cur-
rent values of  and transmits it to the parent. Subsystems of the lowest level of hierarchy 
calculate from 

iSτ
(11) the absolute accelerations of their bodies. 

4 PREPROCESSING MODULE 
As it was shown in the previous section, the most numerically expensive procedure pro-

ceeded during the distributed calculation of the accelerations is the QR-decomposition of the 
block-sparse matrices A from the equations (15), (43). Nowadays exists several solvers, per-
forming the efficient numerical solution of sparse linear systems: Sparspak [5], UMFPACK 
[6], Yale Sparse Matrix Package [7], Harwell Subroutine Library [8].  

It seems more efficient to perform a preprocessing simplification of the QR-decomposition 
instead of use of standard numerical methods for sparse matrices. We have developed in Ma-
ple a preprocessing module, which gets the mechanical parameters of a simulating system 
from Autodesk Inventor, generates correspondent matrices in symbolic form and produces the 
C-code, describing the matrices’ decomposition. Then the C-code is compiled into .dll librar-
ies, which are used by VSD during the simulation of dynamics of the model.  

 9

This approach has several advantages pointed out in the introduction. Generating C-code 
directly not only avoids calculating with zero elements, but also allows to preprocess all nu-



Dmitry Vlasenko, Roland Kasper 

merical parts of expressions. Indexing of matrices is avoided completely as linear code is gen-
erated. 

 

5 DOUBLE INSULATOR CHAIN EXAMPLE 
Consider a double insulator chain example [9, 3], developed as a 3-level hierarchy of sub-

systems, shown in Fig. 5. Each chain consists of four insulators, connected by revolute joints. 
The first end of each chain is coupled with a triangular distance holder; the second is coupled 
with the ground. The holder is connected with a high voltage line, which is modeled as a force 
(shown as a red arrow), acting on the holder. We consider the situation when a bird lands on a 
high-voltage transmission line and added the force (shown as a blue arrow), acting on the dis-
tance holder in vertical direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Double insulator chain model  

 10



Dmitry Vlasenko, Roland Kasper 

Fig. 6 shows the changes of the z-coordinate of the distance holder in 10 seconds.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6: Z-coordinate of the triangular distance holder  

Fig. 7 illustrates the structure of the matrix A1 of the chain submodel and the structure of 
the matrix A2 of the system of the highest level of the hierarchy. Here symbolic elements are 
colored black, zero elements are blank and numerical elements are non-blank. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Matrices of the double insulator chain example, (a) A1  (b) A2  

In Table 1 are shown the densities of the matrices, numerical costs of their QR-
decomposition using the preprocessing module, and the numerical costs of the QR-
decomposition using the dense solver.  
 

 Density, % Flops (VSD) Flops (dense solver)
A1 (chain submodel) 30 5165 14640
A2 (highest level of 

the hierarchy) 33 27301 92190

Table 1 Comparison of simulation effort of double insulator chain model 

 11

0.044 

0 10 

(a) 
(b) 



Dmitry Vlasenko, Roland Kasper 

From Table 1 follows that the distributed calculation of accelerations needs the decomposi-
tion only of sparse matrices, which can be efficiently calculated using the preprocessing mod-
ule.  

6 CONCLUSION AND FUTURE WORK 
The sparse matrix method, implemented in VSD Software, performs the efficient compo-

nent-oriented simulation of dynamics of CAD models of multibodies. It was shown that dur-
ing the distributed calculation of accelerations only the sparse matrices should be decomposed, 
that makes the method suitable for the implementation of a special preprocessing module, per-
forming the symbolic simplification of the decomposition of matrices. The results of the 
simulation of CAD model of a double insulator chain show the method’s efficiency. 

It seems needful to perform the detailed comparison of the efficiency of standard sparse 
solvers and the preprocessing module in future. 

REFERENCES  
[1] Vlasenko, D.: Component-oriented method for simulation of multibody dynamics, PhD 

thesis, Institute of Mobile Systems, Otto-von-Guericke-University Magdeburg (2006). 

[2] Vlasenko, D., Kasper, R.: Algorithm for Component Based Simulation of Multibody 
Dynamics, Technische Mechanik, Band 26, Heft 2, (2006), pp. 92-105. 

[3] Ch. Lubich, U. Nowak, U. Pöhle, and Ch. Engstler. MEXX- numerical software for the 
integration of constrained mechanical multibody systems. Technical Report SC 92-12, 
Konrad-Zuse-Zentrum Berlin, 1992. 

[4] Gene H. Golub, Charles F. van Loan, Matrix Computations, 3rd ed., Johns Hopkins UP, 
1996. 

[5] A. George and J. W. H. Liu Computer Solution of Large Sparse Positive Definite Sys-
tems, PrenticeHall, 1981. 

[6] http://www.cise.ufl.edu/research/sparse/umfpack/ 

[7] S. C. Eisenstat, M. H. Schultz and A. H. Sherman Algorithms and data structures for 
sparse symmetric Gaussian elimination, SIAM Journal on Scientific and Statistical 
Computing, 2(1981), pp 225-237 

[8] United Kingdom Atomic Energy Authority Harwell subroutine library A catalogue of 
Subroutines, Tech. Report AERE R 9185, Harwell Laboratory, Oxfordshire OX11 0RA, 
Great Britain, 1988 

 12

[9] Hagedorn, P., Idelberger, H., Mocks, L: Dynamische Vorgänge bei Lastumlagerung in 
Abspannketten von Freileitungen. etz Archiv 2, p 109-119 (1980). 

http://www.cise.ufl.edu/research/sparse/umfpack/

