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ABSTRACT 

This paper presents a method of simplification of 
multibody dynamics equations by preprocessing based on 
the symbolic decomposition and multiplication of sparse 
matrices. The method was implemented in the Virtual 
System Designer (VSD) software for the simulation of 
dynamics of CAD systems. Simulation tests show that the 
symbolical preprocessing greatly increases the numerical 
efficiency of the simulation. 

INTRODUCTION 

Nowadays there are many of methods performing the 
simulation of multibody systems. If simulated models are 
described using absolute coordinates, the equations of 
motion include large sparse matrices. Decompositions and 
multiplications of the matrices are the most numerically 
costly procedures in the simulation process.  

The numerical efficiency of simulation methods can be 
significantly reduced if the sparse structure of matrices is 
taken into account. In the last years we developed a method 
for symbolic simplification of equations of motion based on 
preprocessing, which performs the object-oriented 
multibodies with complex structures and redundant 
constraints (Vlasenko and  Kasper 2007:2). The symbolic 
simplification of decompositions and multiplications of 
matrices has several advantages in comparison with standard 
sparse solvers:  

• Sparse structure of matrices is used completely 
without any run time overhead. 

• The numerical operations with numerical elements of 
matrices are performed already during the translation. 

• Additional operations with arrays of indexes (like in 
usual sparse solvers) are not needed. 

In this article we show the results of the implementation of 
the method for the calculation of accelerations of 
multibodies.  We developed in Maple a preprocessing 
module, which performs the symbolical simplification, and 
integrated it with our tool Virtual System Designer (VSD) 
for the object-oriented simulation of dynamics of CAD 
systems. Tests show that the integration of the preprocessing 
module with VSD greatly reduces the simulation time and 
the number of computations.  

SYMBOLICAL SIMPLIFICATION OF THE 
DECOMPOSITION OF MATRICES 

Let us consider a multibody system, consisting of rigid 
bodies, connected by holonomical constrains. The equations 
of constraints can be written as:  

0)( =qg  (1)

where q is the vector of coordinates. 
Differentiating this equation, we get the equations of 

constraints on the velocity level: 

0)( =vqG  (2)

where G  is the constraint Jacobian matrix,  v is the vector 
of velocity variables. 

Differentiating (1) twice, we obtain the equations of 
constraints on the acceleration level: 

),()( vquvqG =&  (3)

where  

vGu ⋅−= &  (4)

Combining (3) with the equations of motion in descriptor 
form:  

)()( qfλqGvM =+ T&  (5)

we get the index-one formulation of the equations of motion 
(Eich-Soellner and Führer 1998; von Schwerin 1999) which 
can be used for the calculation of v& , λ  
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where f is the vector of external forces, M is the mass 
matrix, λ  is the vector of Lagrange multipliers. 

This linear system can be efficiently solved by sparse 
solvers, exploiting a block-sparse structure of matrices M   
and G  (e.g. null space methods, range space methods) (von 
Schwerin 1999; Lubich et al., 1995)  

We developed an algorithm, based on the QR-
decomposition of matrices, which can be used for the 
simulation of mechanical systems with complex structure, 
including closed loops and redundant constraints. Let us 
consider it more precisely.  

From (2) we get the system of equations 
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Computing the Choleski decomposition of TLLM = , we 
obtain from (7) the matrix equation for λ  

bAλA =T
 (10)

where 
TGLA 1−=  

ufGMb −= −1
 

(11)

(12)

If the matrix A is linearly independent (e.g. all rows of the 
Jacobian matrix G are independent), then, using the QR-

decomposition of ⎟⎟
⎠

⎞
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0
R

QA , we can calculate the value of 

λ  as  

bRRλ 11 )( −−= T
 (13)

However, in the case of redundant constraints G has 
dependent rows! The presence of redundant constraints in 
CAD models is not unusual. In many cases design engineers 
develop CAD models, using more constraints than it is 
needful from the mechanical point of view. The redesign of 
CAD models and the elimination of redundant constraints by 
engineer is very costly procedure. 

From (11) follows that if G has dependent rows, then A 
has dependent columns. Consider now the calculation of 
solution of (10) in this case. Clearly, if A has dependent 
columns then the product AAT  is singular and the solution 
of (10) is not unique. In our case we need only an arbitrary 
solution with limited norm. Performing the QR-
decomposition with pivoting of A, we obtain (Golub and van 
Loan 1996): 
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Here Q is an orthogonal matrix, П is a permutation and R1 
is a non-singular and upper triangular (r, r) matrix, where 
r=rank(A). Then the solution of (10) can be found using the 
formula (Vlasenko and  Kasper 2007:2)  
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11 )( −−=  (15) 

where П1  is a part of the permutation matrix П: П=(П1, П2). 
From (15) follows that we do not need to calculate the 

matrix Q , but only 1П , 1R . Substituting the value of λ  in 
(8), we calculate the absolute accelerations v& . 

Since using absolute coordinates, the matrix A usually has 
a sparse structure and includes both numerical and symbolic 
elements, e.g. the elements that are constant during the 
simulation and elements, depending on the coordinates of 
bodies. Therefore, the QR-decomposition of A can be 
optimized. We have developed a preprocessing module, 
which symbolically simplifying the QR-decomposition of 
matrices and for each decomposition generates a 
corresponding C-code.  

This approach has the advantages pointed out in 
introduction. Generating C-code directly not only avoids 

calculating with zero elements, but also allows to preprocess 
all numerical parts of expressions. Indexing of matrices is 
avoided completely as linear code is generated. 

It is well-known that the numerical complexity of the QR-
decomposition depends on the order of columns. That is why 
we decompose not the matrix A, but the matrix ПAA ~~

=  
which is obtained from A by the reordering of columns. 

We do not identify dependent rows in the matrix A~  on the 
preprocessing level because some elements of A~  are not 
constant. That is why we can get the situation when, 
substituting in our C-procedure the numerical values of 
elements of A~  on an arbitrary time step, we obtain the 
matrix R1 having zero elements on the main diagonal. We 
propose the following algorithm of the solution of this 
problem:  

1. Using a C-procedure, generated by the 
preprocessing module, we obtain from the 
numerical value of the matrix A~  the upper 
triangular matrix R, having zero elements on the 
main diagonal. 

2. We permutate rows and columns of R in order to 
maximize the size of the non-singular upper 
triangular submatrix R1,1 and to minimize the size 
of the lower submatrix R2,2:  
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where rP  and cP  are permutation matrices. 
3. We perform the QR-decomposition of the 

submatrix 
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matrix R1  from (13) can be calculated as  
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where 1,22,12,1
~ ПRR = . The matrix 1П from (13) is 

a combination of submatrices of П, 1,2П . 

DOUBLE INSULATOR CHAIN EXAMPLE 

Consider a double insulator chain example (Hagedorn  et 
al. 1980; Lubich et al., 1995; Vlasenko and  Kasper 2007:1), 
shown in Figure 1. Each chain consists of insulators, 
connected by revolute joints. The first end of each chain is 
coupled with the triangular distance holder; the second is 
coupled with the ground. The holder is connected with the 
high voltage line, which is modeled as a force fc, acting on 
the holder. 
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