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ABSTRACT 

In this article the description of some types of spatial gear 

constraints (spur gears, bevel gears, etc.) in absolute 

coordinates is considered. Instead of the numerical expensive 

calculation of constraint Jacobian matrix we propose to use 

the transformed Jacobian matrix, which can be calculated 

much more efficiently. The proposed methods of description 

of gear constraints were implemented for the simulation of 

dynamics of CAD model of KUKA KR 15/2 industrial 

manipulator.  

INTRODUCTION 

Gears and gearing systems are fundamental mechanical 

components, widely used in the design of machines and 

mechanical systems for the transmission of motion and 

forces. On the other hand the detailed description of gear 

constraints is usually out of interest of multibody literature. 

In a few books can be found the description of planar 

kinematics of gears (Haug 1989, Shabana 2001) or the 

description of the spatial gear kinematics in joint coordinates 

(Schweiger and Otter, 2003).  

In this article the description of some types of spatial gear 

constraints (spur gears, bevel gears, etc.) in absolute 

coordinates is considered. The use of absolute coordinates 

helps to integrate dynamic simulation tools with CAD 

systems, widely used for design of mechanical systems.  

In order to better understand the issues involved, it is useful 

to consider the equations of motion in absolute coordinates. 

Let 𝐪𝑖 =  𝐱𝑖𝑇 , 𝐞𝑖𝑇 𝑇  be the vector of absolute coordinates of 

the i-th body consisting of position coordinates  

𝐱𝑖 =  𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖  

𝑇
 and of orientation coordinates 𝐞𝑖 . 

Orientation coordinates can be defined in different ways (e.g. 

Euler angles, Bryan angles, Rodriguez parameters, Euler 

parameters, etc.). The vector of generalized velocities 

𝐯𝑖 =  𝐱 𝑖𝑇 , 𝛚𝑖𝑇 𝑇  includes linear velocity 𝐱 𝑖  and angular 

velocity 𝛚𝑖 . The first derivative of 𝐪𝑖  is proportional to the 

vector 𝐯𝑖: 𝐪 𝑖=𝐓𝑖 𝐪𝑖 𝐯𝑖 , where 𝐓𝑖  denote the relation matrix. 

Let 𝐪 =  𝐪1𝑇 … 𝐪n𝑇 𝑇  be the vector of absolute 

coordinates of a multibody system. By 𝐠(𝐪) denote the 

vector of constraints, describing joints, connecting bodies in 

the simulated mechanical system. By 𝐆(𝐪) denote the 

Jacobian matrix of 𝐠(𝐪): 

𝐆(𝐪)=
𝜕𝐠(𝐪)

𝜕𝐪
 (1) 

Differentiating 𝐠(𝐪), we get the equations of joint 

constraints on the velocity level: 

𝐠𝐯(𝐪, 𝐯)=𝐆(𝐪)∙𝐪 = 𝐆(𝐪)∙T(𝐪)∙v (2) 

Let 𝐆 (𝐪)=𝐆(𝐪)∙T(𝐪) be the transformed Jacobian matrix. 

Then (2) can be written as  

𝐠𝐯(𝐪, 𝐯)=𝐆 (𝐪)∙v=𝟎 (3) 

We proposed (Vlasenko and Kasper 2009) the method of the 

simulation of multibodies, based on the Newton-Euler 

equations of motion 

𝐌(𝐪)𝐯 + 𝐆 𝑇(𝐪)𝛌 = 𝐟(𝐪, 𝐯) (4) 

where 𝐟(𝐪, 𝐯) is the vector of external forces, M is the mass 

matrix, 𝛌 is the vector of Lagrange multipliers. The main 

advantage of this method is that it uses the matrix 𝐆 (𝐪), 

which can be calculated much easily than the original 

Jacobian matrix 𝐆(𝐪).  Furthermore, if the non-minimal set 

of coordinates is used (e.g. Euler parameters), then the size 

of 𝐆  is less than the size of 𝐆, that is important for the 

reduction of the simulation numerical costs.  

In this article is shown the generation of constraints 

equations g and of transformed Jacobian matrix 𝐆  for some 

types of gear joints, commonly used in mechanical systems 

(spur gears, bevel gears, etc.). In the description of gears we 

assume that constraints, generated by gear joints, limit only 

the relative rotation of gears. All other limitations on the 

relative motion of connected gears (e.g. constant distance 

between axes in the spur gear joint, etc.) are achieved as the 

result of connection of gears by other joints (usually by 

revolute joint) to some basement. This art of definition of 

gear constraints looks natural and similar to the definition of 
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gear constraints in CAD-like systems (Autodesk Inventor, 

etc.). 

The proposed methods of description of gear constraints 

were implemented for the simulation of dynamics of CAD 

model of KUKA KR 15/2 industrial manipulator.  

SPATIAL KINEMATICS OF GEARS 

Spur gear joint 

Equation of constraint on the coordinate level 

Let us consider the gear i and the gear j, shown in Figure 1, 

which roll relative to each other about parallel axes 𝐚 𝑖  and 

𝐚 𝑗 . Let 𝐶𝑖  and 𝐶𝑗  be the points on axes 𝐚 𝑖  and 𝐚 𝑗 , lying on 

the line, perpendicular to 𝐚 𝑖 . We assume that the motion of 

gears is constrained in such way that only the relative 

rotation of them is allowed, i.e. 𝐚 𝑖  remain parallel to 𝐚 𝑗 , the 

vector 𝐶𝑖𝐶𝑗  remains perpendicular to 𝐚 𝑖  and the distance 

between 𝐶𝑖  and 𝐶𝑗  remain constant (equal to the sum of the 

gears’ radii).  

 

Figure 1: Spur Gear Joint 

By 𝐜 𝑖  and 𝐜 𝑗  denote the local position vectors of 𝐶𝑖  and 𝐶𝑗 , 

respectively. Let 𝑃𝑖  and 𝑃𝑗  be the points of contact on bodies 

i and j, lying on the line 𝐶𝑖𝐶𝑗 . By 𝑃0
𝑗
 and 𝑃0

𝑖  denote the 

points of contact on gears at initial stage.  

Gears roll relative to each other without slip, therefore, the 

arc length 𝑃0
𝑖𝑃𝑖  and 𝑃0

𝑗
𝑃𝑗  of contact on the gears must be 

equal. Then we get the equation of constraint 

g = α𝑗𝑟𝑗 + α𝑖𝑟𝑖  (5) 

where α𝑖  is the angle between 𝑃0
𝑖  and 𝑃𝑖 , α𝑗  is the angle 

between 𝑃0
𝑗
 and 𝑃𝑗 , 𝑟𝑖  and 𝑟𝑗  are the radii of gears.  

Now we need to find the formula for the calculation of α𝑗  

and α𝑖 . Let 𝐩 0
𝑖 , 𝐩 𝑖 be the vectors 𝐶𝑖𝑃0

𝑖  and 𝐶𝑖𝑃𝑖  expressed in 

body i. Let 𝐩 0
𝑗
, 𝐩 

𝑗
be the vectors 𝐶𝑗𝑃0

𝑗
 and 𝐶𝑗𝑃𝑗  expressed in 

body j. From the coincidence of points 𝑃𝑖  and 𝑃𝑗  follows 

that  

𝐱𝑖 + 𝐑𝑖𝐜 𝑖 + 𝐑𝑖𝐩 𝑖 = 𝐱𝑗 + 𝐑𝑗𝐜 𝑗 + 𝐑𝑗𝐩 𝑗  (6) 

where 𝐱𝑖  and 𝐱𝑗  are the vector of position coordinates of 

bodies i and j, respectively; 𝐑𝑖  and 𝐑𝑗  are the transformation 

matrices of the two bodies. This can be also written in 

another form 

𝐱𝑖 + 𝐜𝑖 + 𝐩𝑖 = 𝐱𝑗 + 𝐜𝑗 + 𝐩𝑗  (7) 

where 𝐜𝑖 = 𝐑𝑖𝐜 𝑖 , 𝐜
𝑗

= 𝐑𝑗𝐜 
𝑗

, 𝐩𝑖 = 𝐑𝑖𝐩 𝑖 , 𝐩
𝑗

= 𝐑𝑗𝐩 
𝑗

 

are the vectors 𝐜 𝑖 , 𝐜 𝑗 , 𝐩 𝑖 , 𝐩 
𝑗

, expressed in the global frame.  

Let l denote the vector of the constant length from 𝐶𝑖  to 𝐶𝑗 , 

calculated as  

𝐥 = 𝐱𝑗 + 𝐜𝑗 − 𝐱𝑖 − 𝐜𝑖  (8) 

Then (7) can be rewritten as 

𝐩𝑖 − 𝐩𝑗 = 𝐥 (9) 

Let 𝒆𝑖  , 𝒆𝑗  be the units vectors along 𝐩𝑖  and 𝐩
𝑗

, 

correspondently 

𝐩𝑙 = 𝑟𝑙𝐞𝑙      𝑙 = 𝑖, 𝑗 (10) 

From the definition of vectors 𝐩𝑖  and 𝐩
𝑗

 follows that  𝐞𝑖  

and  𝐞
𝑗

 can be calculated as 

𝐞𝑖 = −𝐞𝑗 =
𝐥

 𝐥 
 (11) 

In practice the joint is usually defined by the gear ratio 

𝑘 = 𝑟𝑗 /𝑟𝑖  (12) 

Then 𝑟𝑖 , 𝑟𝑗  can be calculated from k using the formula  

𝑟𝑖 =  𝐩𝟎
𝑖  =

1

1 + 𝑘
∙  𝐥  

𝑟𝑗 =  𝐩𝟎
𝑗
 =

𝑘

1 + 𝑘
∙  𝐥  

(13) 

(14) 

If the modulus of α𝑗  and of α𝑖  are less than π/2, then α𝑗  and 

α𝑖  can be calculated as 

α𝑙 = asin 𝐚𝑙𝑇 ∙  𝐞0
𝑙 × 𝐞𝑙        𝑙 = 𝑖, 𝑗 (15) 

where 𝐚𝑙 = 𝐑𝑙𝐚 𝑙  is the axis 𝐚 𝑙 , expressed in the global 

frame.  

In practice we can guarantee that α𝑗  and α𝑖  are less than π/2 

if during the simulation we always move the points 𝑃0
𝑗
 and 

𝑃0
𝑖  to the tops of last contacted teeth. The number of teeth of 

gears can be defined manually during the gear design or 

automatically by the simulation pre-compiler. 

The equation of constraint on the velocity level 

Let us show how we can find the equation of constraint on 

the velocity level 𝐠𝐯 and to derive from 𝐠𝐯 the formula for 𝐆 . 

The equation of constraint on the velocity level are 

calculated as the time derivative of (5) 

g𝐯 = α 𝑗 𝑟𝑗 + α 𝑖𝑟𝑖 = 0 (16) 

Let us define the relative orthogonal system of coordinates 

𝐶 𝑖𝐞𝑏𝑥𝐞𝑏𝑦 𝐞𝑏𝑧  where the origin of the relative system is 

rigidly connected to 𝐶𝑖 , 𝐱𝑏  is the axes lying on the line 𝐶𝑖𝐶𝑗 , 

𝐞𝑏𝑦  lies on the axes 𝐚 𝑖  (i.e. 𝐞𝑏𝑦 = 𝐚 𝑖) and the vector 𝐞𝑏𝑧  is 

chosen in such way that the 𝐶𝑖𝐞𝑏𝑥 𝐞𝑏𝑦 𝐞𝑏𝑧  will be right-

handed. Let 𝐮𝑏
𝑃𝑖 , 𝐮𝑏

𝑃𝑗
 be the velocities of points 𝑃𝑖  and 𝑃

𝑗
 

relative 𝐶𝑖𝐞𝑏𝑥 𝐞𝑏𝑦 𝐞𝑏𝑧 , expressed in the global coordinate 

system, respectively. From the definition of 𝐶𝑖𝐞𝑏𝑥 𝐞𝑏𝑦 𝐞𝑏𝑧  

follows that 

𝛚𝑏
𝑙 = α 𝑙𝐚𝑙    l=i,j (17) 

P 

 O 
j
 𝐩 𝑗  

𝐩 0
𝑗
 

𝐩 0
𝑖  

𝐩 𝑖  
 α

j
 

  α
i
 𝑃0

𝑗
 

𝑃0
𝑖  

𝐜 𝑗  
 C 

j
 

 

 C
i
 

𝐚 𝑗  

𝐚 𝑖  
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where 𝛚𝑏
𝑙  be the relative angular velocity of l-th body, 

expressed in the global coordinate system, calculated as 

𝛚𝑏
𝑙 = 𝛚𝑙 − 𝛚𝑏     l=i,j (18) 

where 𝛚𝑏  is the angular velocity of the frame 𝐶𝑖𝐞𝑏𝑥 𝐞𝑏𝑦 𝐞𝑏𝑧  

and 𝛚𝑙  is the angular velocity of the l-th body. 

Cross-multiplying both parts of (17) by the vector 𝐞𝑙 , we 

get 

𝛚𝑏
𝑙 × 𝐞𝑙 = α 𝑙𝐚𝑙 × 𝐞𝑙    l=i,j (19) 

Let 𝐬 be a vector perpendicular to the axis of rotation 𝐚𝑖  and 

to 𝐩𝑖 : 𝐬 = 𝐚𝑖 × 𝐞𝑖 . Then from (19) follows that 

α 𝑖 = 𝐬𝑇 𝛚𝑏
𝑖 × 𝐞𝑖   

α 𝑗 = −𝐬𝑇 𝛚𝑏
𝑗
× 𝐞

𝑗
  

(20) 

Substituting α 𝑖 , α 𝑗  in (16), we get 

g𝐯 = −𝐬𝑇 𝛚𝑏
𝑗
× 𝐩𝑗 + 𝐬𝑇 𝛚𝑏

𝑖 × 𝐩𝑗  (21) 

Using the formula (18) for 𝛚𝑏
𝑗
, 𝛚𝑏

𝑖 , we obtain 

g𝐯 = 𝐬𝑇 𝛚𝑖 × 𝐩𝑖 − 𝛚
𝑗

× 𝐩𝑗 + 𝛚𝑏 × (𝐩𝑗 − 𝐩𝑖)  (22) 

Let 𝐮𝐶𝑖 , 𝐮
𝐶𝑗

 be the absolute velocities of points 𝐶𝑖  and 𝐶
𝑗

, 

respectively, calculated as 

𝐮𝐶𝑙 = 𝐱 𝑙 + 𝛚𝑙 × 𝐜𝑙     l=i,j (23) 

From the definition of 𝐶𝑖𝐞𝑏𝑥 𝐞𝑏𝑦 𝐞𝑏𝑧  follows the relation  

𝛚𝑏 × (𝐩𝑖 − 𝐩𝑗 ) = 𝐮
𝐶𝑗

− 𝐮𝐶𝑖  (24) 

Substituting this equation in (22) and using (23), we get: 

g𝐯 = 𝐬𝑇  𝐱 𝑖 + 𝛚𝑖 × (𝐜𝑖 + 𝐩𝑖 ) 

−  𝐱 𝑗 + 𝛚
𝑗

× (𝐜𝑗 + 𝐩
𝑗

)   
(25) 

The physical meaning of this equation is the equality of 

projections of velocities of 𝑃𝑖  and 𝑃𝑗  on the axis 𝒔. Using 

the triple product formula 

𝐚𝑇(𝐛 × 𝐜) =  𝐜 × 𝐚 𝑇𝐛 =  𝐚 × 𝐛 𝑇𝐜 (26) 

we get from (25) 

𝐠𝐯=𝐬𝑇𝐱 𝑖 −  𝐬 ×  𝐜𝑖 + 𝐩𝑖  𝑇𝛚𝑖 − 𝐬𝑇𝐱 𝑗

+  𝐬 ×  𝐜𝑗 + 𝐩𝑗   𝑇𝛚𝑗 = 𝟎 
(27) 

Now, using (3), we get the matrix 𝐆 (𝐪𝑖 ,𝐪𝑗 ) 

𝐆 𝑇 =  

𝐬
−𝐬 ×  𝐜𝑖 + 𝐩𝑖 

−𝐬
𝐬 ×  𝐜𝑗 + 𝐩𝑗  

  (28) 

Clear, that the calculation of 𝐆  from (28) is much easier than 

the calculation of Jacobian 𝐆(𝐪𝑖 ,𝐪𝑗 ) from (1). 

Bevel gear joint 

Let us consider the gear i and the gear j, shown in Figure 2, 

which roll relative to each other with intersecting axes 𝐚 𝑖  and 

𝐚 𝑗  in such way that the angles of rotation α𝑖 , α𝑗  are related 

as 

α𝑖 = −α𝑗𝑘 (29) 

where k is the gear ratio defined by the quotient between the 

number of gear teeth.  

 

Figure 2: Bevel Gear Joint  

In practice the joint is defined by the definition of bodies-

fixed axes 𝐚 𝑖  and 𝐚 𝑗  and by the local position vectors 𝐜 𝑖  and 

𝐜 𝑗  of some points 𝐶𝑖  and C
𝑗

 on the axes 𝐚 𝑖  and 𝐚 𝑗 , 

respectively.  

By l denote the vector of the constant length from 𝐶𝑖  to 𝐶𝑗 , 

calculated from (8). Let us define for each body l some 

vector 𝐩 𝑙  as perpendicular to 𝐚 𝑙 , which begins at 𝐶𝑙  and 

ends at the point 𝑃𝑙 , lying on the line of contact. Let 𝑟𝑖  and 

𝑟𝑗  be the modulus of 𝐩 𝑖  and 𝐩 
𝑗

, respectively (similarly to 

the radii of 𝑟𝑖  and 𝑟𝑗  of spur gears).  

Let us assume that 𝐶𝑖  and C
𝑗

 are chosen in such way that 

points 𝑃𝑖  and 𝑃𝑗  are coincident, i.e.  

𝐩𝑖 − 𝐩
𝑗

= 𝐥 (30) 

Then from the definition of 𝐩 𝑖  and 𝐩 
𝑗

 follows that 

𝑘 =
 𝐩

𝑗
 

 𝐩𝑖  
=

𝑟𝑗

𝑟𝑖
 (31) 

It can be shown that  

𝑟𝑖 =
 𝐚𝑗𝑇 𝐥 

 𝐚𝑖 × 𝐚𝑗 
 

𝑟𝑗 = 𝑘𝑟𝑖  

 

Now we can reformulate the equation of bevel gear 

constraint (29) in the form similar to the equation of the spur 

gear constraint  

g = α𝑗 𝑟𝑗 + α𝑖𝑟𝑖  (32) 

Let us show now how to calculate the angles α𝑗  and α𝑖 . By 

𝑃0
𝑗
 and 𝑃0

𝑖  denote the points 𝑃
𝑗

 and 𝑃𝑖 at initial stage and by 

𝐩 0
𝑖 , 𝐩 𝟎

𝑗
 the start values of vectors 𝐩 𝑖 , 𝐩 

𝑗
, respectively. 

Obviously, the angle of relative rotation α𝑖  is the angle 

between 𝐩 0
𝑖  and 𝐩 𝑖  and α𝑗  is the angle between 𝐩 0

𝑗
 and 𝐩 

𝑗
.  

From the numerical point of view it’s easily to calculate α𝑙  

as the angle between unit vectors  𝐞𝑙 = 𝐩𝑙 /𝑟𝑙 ,  𝐞𝟎
𝑙 = 𝐩𝟎

𝑙 /𝑟𝑙  

(l=i,j).  

P 

𝐩 𝑗  
𝐩 0

𝑗
 

𝐩 0
𝑖  

𝐩 𝑖  
 α

j
 

 
 α

i
 

𝑃0
𝑗
 

𝑃0
𝑖  

 C 
j
 

 

 C
i
 

𝐚 𝑗  

𝐚 𝑖  
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From the definition of vectors 𝐩𝑖 , 𝐩𝑖  follows that 𝐞𝑖 = 𝐬 × 𝐚𝑖  

and 𝐞𝑗 = −𝐬 × 𝐚𝑗 , where 𝐬 is a unit vector, perpendicular to 

𝐚𝑖 , 𝐚𝑗 , calculated as  

𝐬 =
𝐚𝑖 × 𝐚𝑗

 𝐚𝑖 × 𝐚𝑗 
 (33) 

If the modulus of α𝑗  and of α𝑖  are less than π/2, then α𝑗  and 

α𝑖  can be calculated from (15).  

Using the same procedure for the generation of equation of 

constraint on the velocity level, as it was used above for the 

spur gear case, we obtain that the transformed Jacobian 

matrix 𝐆  can be calculated from (28). 

Concave-convex gear joint 

 

Figure 3: Concave-Convex Gear Joint  

Let us consider a concave-convex gear joint, describing the 

rolling contact of smaller gear j makes inside the larger 

interior gear i, shown Figure 3. Using the definitions from 

the spur gear case, we obtain the following relation between 

angles of rotations  

α𝑗 𝑟𝑗 − α𝑖𝑟𝑖=0 (34) 

Clear, that unlike convex gear case now the vectors 𝐞𝑖  and 

𝐞
𝑗

 are equal and are calculated as  

𝐞𝑖 = 𝐞
𝑗

=
𝐥

 𝐥 
 (35) 

The formula for the calculation of radii 𝑟𝑖  and 𝑟𝑗  from the 

gear ratio 𝑘 = 𝑟𝑗 /𝑟𝑖  also changes as  

𝑟𝑖 =  𝐩𝟎
𝑖  =

1

1 − 𝑘
∙  𝐥  

𝑟𝑗 =  𝐩𝟎
𝐣
 =

𝑘

1 − 𝑘
∙  𝐥  

 

The angles α𝑗  and α𝑖  in (34) can be calculated from (15) 

Using the same procedure, as it was used above for the spur 

gear case, we obtain the matrix 𝐆   

𝐆 𝑇 =  

−𝐬
𝐬 ×  𝐜𝑖 + 𝐩𝑖 

𝐬
−𝐬 ×  𝐜𝑗 + 𝐩𝑗  

  (36) 

Rack and pinion joint 

 

Figure 4: Rack and Pinion Joint 

Let us consider a circular gear i (called rack) and a flat bar j 

(called pinion) constituting the constraint kinematic pair, 

shown in Figure 4. The rack rolls relative to the pinion about 

the axis 𝐚 𝑖  whereby the pinion axis 𝐚 𝑗  is situated on the line 

of contact. It’s assumed that 𝐚 𝑖  and 𝐚 𝑗  are perpendicular in 

space, i.e. 𝐚𝑖𝑇𝐚
𝑗

= 𝟎. Let 𝐶𝑗  be the point of contact on 

pinion at initial stage and 𝐶𝑖  be the points on axis 𝐚 𝑖 , chosen 

in such way that 𝐶𝑖𝐶𝑗  is perpendicular to 𝐚 𝑖 . As before, we 

denote by 𝑃𝑖  and 𝑃𝑗  the points of contact on bodies i and j, 

and by 𝑃0
𝑖  the point of contact on body i at initial stage.  

The equation of our constraint can be written as  

g = 𝑑𝑗 − α𝑖𝑟𝑖  (37) 

where α𝑖  is the angle between 𝑃0
𝑖  and 𝑃𝑖 , 𝑑𝑗  is the distance 

between 𝑃0
𝑗
 and 𝑃𝑗 . Let us show now how to calculate 𝑑𝑗  

and α𝑖 .  

Let 𝐝 𝑗  be the vector from 𝑃0
𝑗
 to 𝑃

𝑗
. It is obvious that  

𝐝𝑗 =  𝑑𝑗𝐚
𝑗

 (38) 

Let 𝐩 0
𝑖 , 𝐩 𝑖 , 𝐜 𝑗 , be the local positions of 𝑃0

𝑖 , 𝑃𝑖 , C
𝑗

, 

respectively. From the coincidence of points 𝑃𝑖  and 𝑃𝑗  

follows that 

𝐱𝑖 + 𝐜𝑖 + 𝐩𝑖 = 𝐱𝑗 + 𝐜𝑗 + 𝐝𝑗  (39) 

From the definition follows that 𝐩𝑖  is perpendicular to 𝐚
𝑗

. 

Therefore, multiplying (39) by 𝐚
𝑗

, we get the formula for 

the calculation of 𝑑𝑗  

𝑑𝑗 = 𝐚
𝑗𝑇

(𝐱𝑖 + 𝐜𝑖 − 𝐱𝑗 − 𝐜𝑗 ) (40) 

Let  𝐞𝑖 =  𝐩𝑖 /𝑟𝑖  be the unit vector along 𝐩𝑖 . Let 𝐞 
𝑗

 be the 

vector of coordinates of 𝐞𝑖  in the pinion j. Obviously, 𝐞 
𝑗

 is 

constant. The angle α𝑖  can be calculated from (15), whereby 

the vector 𝐞𝑖  can be calculated as 𝐞𝑖 = 𝐑𝑗𝐞 
𝑗

.  

In the same way as in the spur gear case, we obtain 𝐆  

𝐆 𝑇 =

 

  
 

𝐚
𝑗

𝐚
𝑗

×  𝐩𝑖 − 𝐜𝑖  

−𝐚
𝑗

𝐚
𝑗

×  𝐱𝑖 + 𝐜𝑖 − 𝐱𝑗 − 𝐩𝑖   

  
 

 (41) 
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where  𝐩𝑖  can be calculated from the equation  𝐩𝑖 =  𝑟𝑖𝐞𝑖 . 

SIMULATION EXAMPLE: INDUSTRIAL 

MANIPULATOR KUKA KR 15/2 

In the last years we developed a component-oriented 

simulation software Virtual Systems Designer (VSD), 

integrated with CAD-like tool Autodesk Inventor (Kasper et. 

al 2007, Vlasenko and Kasper 2007). The proposed methods 

of description of gear joint constraints were implemented in 

VSD. As a test example we used an Autodesk Inventor 

model of the industrial manipulator KUKA KR 15/2, shown 

in Figure 5. This is a six-axis robot with articulated 

kinematics for all continuous-path controlled tasks. The main 

areas of application of KR 15/2 are handling, assembly, 

machining, etc. (Specifications of Robots) 

 

Figure 5: CAD Model of KUKA KR 15/2 

The complete Autodesk Inventor model includes 1036 parts. 

The correspondent VSD model consists of 43 bodies 

connected by 95 joints (including 7 spur gear joints, 3 bevel 

gear joints and 10 concave-convex gear joints). Some of 

model constraints are redundant because of the model’s 

design in Autesk Inventor (e.g. the definition of stiff 

connection as three plane-to-plane joints leads to the 

generation of three redundant constraints).  

The dynamics of the manipulator under the action of 

gravitational force and of torques in motors is simulated. The 

numerical error of gear constraints on the coordinate and on 

the velocity levels are equall to the accuracy of used 

numerical methods. The analysis of monitored values of 

bodies’ velocities and accelerations show the correctness of 

proposed methods for the generation of gear constraints. 

CONCLUSION AND FUTURE WORK 

In this article is considered the spatial kinematics of most 

commonly used types of gear joints (spur gears, bevel gears, 

concave-convex gears and rack and pinion joints) in absolute 

coordinates. We show the methods of generation of 

equations of correspondent constraints on the coordinate and 

on the velocity level.  

In standard methods of simulation of multibodies the 

calculation of constraint Jacobian matrix 𝐆 is needed, which 

in the case of gears is a numerically expensive procedure. 

That is why we propose to use the simulation algorithm 

based on the calculation of transformed Jacobian matrix 𝐆 . 

In this article is shown that the generation of matrix 𝐆  is easy 

in use and require a very small amount of computational 

effort. Moreover, the additional advantage 𝐆  is its reduced 

size in comparison with 𝐆 when the non-minimal set of 

orientation coordinates is used.  

The proposed methods of description of gear constraints 

were implemented for the simulation of dynamics of KUKA 

KR 15/2 industrial manipulator. Test results show the 

correctness of proposed algorithms.  

In future we plan to improve the area of implementation of 

proposed method by the description of other motion 

transmition elements (e.g. belt joints, cam-followers, etc.). 
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